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Abstract 

Castello Branco, Rodrigo Luís Formosinho; Nieckele, Angela O. (advisor), Carneiro, 
João, N.E. (co-advisor). Development of Momentum Flux Parameters and 
Stability Analysis of a 1D Two-Fluid Model for Vertical Annular Flows. Rio de 
Janeiro, 2022. 151p. Master dissertation – Department of Mechanical 
Engineering, Pontifical Catholic University of Rio de Janeiro. 

The 1D Two-Fluid model has been widely used in industrial simulations to 

predict two-phase flows in pipelines. Recent advances of the Regime Capturing 

methodology allow for the detection of flow pattern transitions from the onset and 

development of interfacial instabilities. However, due to the averaging processes 

required to reduce the dimensionality of the problem, the loss of information renders 

the model ill-posed, i.e., short wavelengths disturbances are amplified at an 

unbounded rate and unphysical solutions are obtained. Closure relations play a key 

role in this problem, since they are required to close the 1D system. Further, the 

reintroduction of the missing physics may stabilize the flow and render the model 

well-posed. The present work proposes a model for the liquid momentum flux 

parameter based on the liquid film velocity profile that is dependent on the local flow 

quantities. Linear Stability Theory (LST) can be used to assess the influence of 

closure parameters in the growth of disturbances and to evaluate the hyperbolicity 

of the model. A viscous approach of the differential Kelvin-Helmholtz and a discrete 

von Neumann stability analyses are performed to evaluate commonly employed 

closure models and the proposed formulations for the liquid momentum flux 

parameter. Numerical simulations are performed, and numerical dispersion relations 

are extracted from the results to verify the predictions against LST data. A rigorous 

numerical evaluation of the novel momentum flux parameter models against a large 

experimental database taken from the literature is carried out. Results show that the 

proposed models outperform the standard constant 𝐶𝐿 values for both pressure drop 

and liquid film thickness. The models also showed better overall consistency 

throughout the extensive experimental database. 

 

 

Keywords 

1D Two-Fluid Model, Vertical Annular Flows, Momentum Flux Parameters, 

Stability Analysis, Assessment of closure models 
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Resumo 

Castello Branco, Rodrigo Luís Formosinho; Nieckele, Angela O. (orientador), 
Carneiro, João, N.E. (co-orientador). Desenvolvimento de Parâmetros de Fluxo 
de Quantidade de Movimento e Análise de Estabilidade do Modelo de Dois-
Fluidos 1D para Escoamento Anular Vertical. Rio de Janeiro, 2022. 151p. 
Dissertação de Mestrado – Departamento de Engenharia Mecânica, Pontifícia 
Universidade Católica do Rio de Janeiro. 

O modelo de Dois-Fluidos 1D vem sendo usado de forma abrangente em 

simulações industriais para prever escoamentos bifásicos em dutos. Avanços 

recentes na metodologia de Regime Capturing permitem a detecção das 

transições entre padrões de escoamento através do crescimento de instabilidades 

interfaciais. Contudo, devido aos procedimentos de média necessários para a 

redução da dimensionalidade do problema, perdas de informação tornam o 

modelo mal posto, i.e., perturbações de comprimentos de onda curtos são 

amplificados a taxas ilimitadas e soluções não físicas são obtidas. Relações de 

fechamento possuem um papel chave nesse problema, uma vez que estas são 

necessárias para fechar o sistema 1D e reintroduzem os mecanismos físicos 

perdidos que podem estabilizar o escoamento e tornar o modelo bem-posto. O 

presente trabalho propõe um modelo para o parâmetro de fluxo de quantidade de 

movimento da fase líquida (ou fator de forma), baseado na distribuição da 

velocidade do filme, que depende das grandezas locais do escoamento. A Teoria 

de Estabilidade Linear (LST) pode ser usada para avaliar a influência dos 

parâmetros de fechamento no crescimento de perturbações e na hiperbolicidade 

do modelo. A abordagem viscosa da análise de estabilidade diferencial de Kelvin-

Helmholtz e a análise discreta de von Neumann são realizadas para avaliar 

relações de fechamento comumente utilizadas na literatura, bem como as 

formulações propostas para o parâmetro de fluxo. Simulações numéricas são 

realizadas, e relações de dispersão numéricas são extraídas dos resultados para 

verificar as previsões com os dados da LST. Uma avaliação numérica rigorosa dos 

novos modelos do parâmetro de fluxo com um grande banco de dados 

experimental é realizada. Os resultados mostraram que as correlações propostas 

superam os valores padrão constantes de fator de forma para avaliações de 

gradiente de pressão e espessura do filme de líquido. Os modelos também 

mostraram melhor consistência ao longo do extenso banco de dados. 

Palavras-chave 

Modelo de Dois-Fluidos 1D, Escoamento Anular Vertical, Parâmetro de fluxo 

de momentum, Análise de estabilidade, Avaliação de relações de fechamento. 
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1 INTRODUCTION 

Multiphase flows are of great importance in various areas of the industry and 

consist of the flow of two or more fluids or phases, separated by interfaces. They 

are found in several industrial processes such as refrigeration, pipeline transport 

of oil & gas, boiling water nuclear reactors, etc. A very common scenario of 

multiphase flow is a two-phase gas-liquid flow in pipelines. 

Understanding the dynamics of two-phase flows in pipelines is an ever-

present challenge in offshore natural gas production systems, considering the 

increasing lengths of the pipeline systems as the exploration of oil and gas fields 

achieve greater depths and the uneven terrain upon where these structures are 

built. These conditions impose a significant need for detailed mathematical and 

numerical studies in order to accurately model and maintain the necessary 

equipment. 

The complexity of the physical phenomena and the variety of length scales 

involved require a compromise between accuracy and computing effort, when 

developing predictive models. A prominent challenge in predicting two-phase flows 

in pipes is the tracking of the phases in the domain, which can be distributed in 

different patterns depending on the operating conditions of the flow (temperature, 

pressure, and flowrate), fluid properties (density, viscosity, and surface tension) 

and the pipeline geometry.  

Some of the most common flow configurations for vertical geometries include 

annular, slug, churn, bubbly and dispersed, as shown in Figure 1.1, and for 

horizontal geometries there are stratified, stratified wavy, bubble, slug, plug, 

annular and dispersed flow. The behavior of flow patterns is heavily reliant on the 

liquid and gas superficial velocities, which in turn affects the dynamics of the 

interface, and interfacial instability is a key mechanism through which the transition 

between flow configurations occurs. In stratified flow, for instance, an increase in 

the gas superficial velocity leads to a transition to stratified wavy flow, whereas an 

increase in the liquid superficial velocity induces the formation of slug flow.  

In gas production wells and transport pipelines, it is common for the gas 

current to be accompanied by a liquid mixture of gas condensate, oil and water. In 

situations where the gas flowrates are elevated (e.g., in new wells) a prominent 
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flow regime in vertical pipes is annular flow. It consists of an inner gas core flowing 

circumscribed by a thin liquid film in contact with the pipe walls, as the gas drags 

the liquid mixture and both phases flow concurrently.  

 

Figure 1.1 - Flow configurations for vertical and horizontal pipes (Brennen, 2005). 

The dynamics of the liquid film are important to accurately predict the 

behavior of annular flows. Due to the gas-liquid relative velocity, a common 

phenomenon is the appearance of interfacial waves in the liquid film, and these 

waves can be sub-categorized into ripples – small amplitude and high frequency – 

and disturbance waves – large amplitude and low frequency. They act as a source 

of surface roughness to the gas flow and therefore play a role in the interfacial drag 

and pressure drop. A major problem in gas exploration is the gradual decrease in 

operating pressure, which results in lower gas flowrates and reduces its ability to 

drag the liquid film upwards against gravitational forces. The resulting 

accumulation of liquid at the entrance of the well and impairment of further 

production is a known phenomenon called liquid loading (Belt, 2007; Alves, 2014).  

Moreover, the interaction of disturbance waves with the gas current is known 

to cause the entrainment of droplets in the gas core (Hall-Taylor et al. 2014), which 

is a relevant mechanism affecting the liquid distribution and also has implications 

for heat transfer applications, as steam-vapor droplet annular flow is characterized 

by high convective heat transfer. The dynamics of the liquid film is an important 

and largely investigated element of rod bundle coolant subchannels in boiling water 

reactors (BWR). Part of this effort revolves around a phenomenon called dry-out 

(Kumar et al., 2016). If the flow achieves a critical heat flux, the excessive heating 

can evaporate the liquid film, and the reduced heat transfer coefficient of the 

resulting misty gas flow can substantially increase the temperature of the fuel rods 

(Saxena & Prasser, 2020). 

To accurately predict multiphase flows in pipes, a sophisticated numerical 

methodology is required. There is a wide variety of mathematical models available 

in the literature that are divided into two categories: time and phase average-based 

DBD
PUC-Rio - Certificação Digital Nº 1920932/CA



1. Introduction_________________________________________________ 20 

 

 

method, and direct interface tracking methods. In the interface tracking category, 

also referred to as the one-fluid model, one set of conservation equations are 

solved for the entire domain, with an additional treatment being performed to track 

the fluid interface. In the VOF (Hirt & Nichols, 1981) and Level-Set (Osher & 

Sethian, 1988) methods for example, this is achieved by solving an additional 

transport equation for a marker function.  

In the time and phase average category, a set of averaged conservation 

equations are solved to obtain an accurate solution of the macroscopic behavior of 

the flow. This is a reasonable approximation as the microscopic dynamics of flows 

are usually irrelevant for most engineering problems. Statistical properties are 

employed to model those complex microscopic phenomena. For example, in 

disperse phase flows, it is necessary to determine the average particle size, 

collective drag law for multiparticle systems, rates of nucleation, evaporation or 

condensation (Ishii & Mishima, 1984). Within this class, three main models stand 

out: the homogeneous, the drift-flux, and the two-fluid model. In particular, the two-

fluid model solves one set of conservation equations for each of the phases, and 

their interaction is modeled through the interfacial terms. For pipe flows, a common 

approximation is to consider the relevant characteristics of the flow to vary mainly 

in the axial direction, which allows for an area averaging process in the cross-

section of the pipe, rendering the model one-dimensional. 

The one-dimensional two-fluid model is widely used in the literature to tackle 

two-phase flow problems in industrial applications, it is both a robust and time 

efficient tool to employ in pipeline flows that extend several kilometers. Additionally, 

the use of the 1D two-fluid model with sufficiently fine meshes allows for the 

capture of interfacial wave evolution in the domain, opening the possibility to 

simulate various flow regimes using a single numerical framework (Nieckele & 

Carneiro, 2017). This approach was originally employed to detect the onset of slug-

flows from a stratified configuration and is thus referred to as Slug Capturing (Issa 

& Kempf, 2003). Later on, this methodology has been extended to what is referred 

to as Regime Capturing, which allows detection of several other flow patterns in 

horizontal and vertical geometries (Bonnizi et al., 2009) (Nieckele & Carneiro, 

2017).  

A common issue with the one-dimensional approach is that the averaging 

processes remove information about the flow field and momentum transfer from 

the system of equations, rendering it ill-posed for certain configurations, e.g., when 

the relative velocity between the gas and liquid phase exceeds a certain value in 

horizontal flow (Liao et al., 2008); for vertical geometries, the 1D two fluid model is 
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known to be unconditionally ill-posed (Banerjee & Chan, 1980). Ill-posedness is 

characterized by the unbounded growth of high frequency perturbations, which in 

turn contaminates the physical instabilities rendering the solution meaningless, and 

it manifests as the inability to obtain a mesh convergent solution. 

One may argue that for practical mesh sizes, the numerical discretization 

scheme may be enough to dampen the disturbances, rendering the model 

numerically well-posed. However, methodologies within the Regime Capturing 

approach rely on their ability to detect the naturally occurring growth of interfacial 

instabilities into waves, which may require very fine spatial and temporal 

discretization. There is considerable effort in the literature to develop modifications 

to the standard model to ensure its hyperbolicity by reinjecting information that was 

lost in the averaging process through closure models, which may aid the damping 

of short wavelength perturbations. The development of accurate closure relations 

is an active challenge in one-dimensional modeling. Several formulations have 

been presented over the years with varying rates of success. A promising closure 

model that has gained attention in recent works is the momentum flux parameter, 

or shape factor, that introduces the effect of a nonuniform velocity profile into the 

governing equations.  

Linear stability theory is often employed to assess the dynamics of 

instabilities by analyzing the characteristics of the system of equations. To obtain 

a comprehensive understanding of the effects of closure relations in the model, an 

assessment through the optics of a stability analysis is positive and it can be 

performed in addition to numerical grid convergence tests and comparisons with 

experimental data.  

 Objectives 

The objectives of this work are to improve the regime capturing methodology 

within the two-fluid model by evaluating different closure models through the optics 

of linear stability theory on their ability to stabilize the flow. Additionally, it is noted 

that a promising challenge in closure modelling is the reintroduction of information 

regarding the velocity distribution in the pipeline cross-section through the 

momentum flux parameter. The present work expands on this area of research by 

developing momentum flux parameter models for the liquid phase in vertical 

annular flows. The novel formulations are evaluated in their ability to ensure well-

posedness to the system through a linear stability analysis, and in their contribution 

to the physical accuracy of the model through simulation tests against an extensive 
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experimental database. 

 Structure of the Dissertation 

A literature review of the main experimental and numerical advancements in 

two-phase annular flows is carried out in Chapter 2. Chapter 3 outlines the 

mathematical model for the 1D Two-Fluid Model, boundary conditions for the 

physical phenomenon and closure relations.  

In Chapter 4, a closure relation that aims to model the liquid film velocity 

distribution in the cross-section of the pipe is devised. Chapter 5 describes the 

methodology for the numerical simulations of two-phase flows with the 1D Two-

Fluid Model. Chapter 6 presents the mathematical and discrete formulations of the 

Linear Stability Analysis performed in this work. Chapter 7 shows the main results 

of the present work, i.e., the stability analyses and discussions of the impact of 

closure models from a hydrodynamic stability standpoint. Further, the numerical 

results are discussed, which constitute of a rigorous grid sensitivity test and 

comparisons against an extensive experimental database. Lastly, the conclusion 

and suggestions for future works are carried out in Chapter 8. 
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2 LITERATURE REVIEW 

Upward vertical annular flow has gained a lot of attention in the literature due 

to its complex nature and has been the object of a large stream of experimental 

studies. It consists of a turbulent gas flow in the core region of the pipe, 

circumscribed by a thin liquid film flowing in the pipe wall. For higher superficial 

velocities, the gas shear induces the appearance of wavy structures in the 

gas/liquid interface. Hall-Taylor et al. (1963) performed one of the earliest 

experimental works that examined the conditions by which interfacial waves occur 

through measurements of wave velocity, separation, and frequency. Wolf et al. 

(2001) have shown that interfacial waves tend to form close to the inlet, where the 

liquid phase is introduced. After a transitional region of approximately 10 diameters 

from the liquid injection point, the waves become circumferentially coherent (Zhao 

et al. 2013). This transitional period allows for the growth of those interfacial 

structures into what are known as disturbance or roll waves.  

Disturbance waves are large amplitude and low frequency waves, which 

travel with a higher velocity than the overall liquid film (Alekseenko et al., 2013; 

Hall-Taylor et al., 2014) and tend to appear when a critical gas flow rate is 

achieved. The height of these waves is known to be about as three/four times that 

of the liquid film (Hewitt & Nicholls, 1969). Photographic studies have shown that 

those heights undergo large variations (Hewitt et al., 1990; Badie et al., 2001), 

rendering the behavior of roll waves three dimensional in nature. They also move 

with an approximately constant wave velocity (Azzopardi, 1997). Several 

researchers have performed studies on roll waves over the years (Hall Taylor et 

al., 1963; Chu & Dukler, 1974; Azzopardi, 1986). 

Interfacial waves are known to have a profound effect on interfacial shear 

stress, thereby increasing the pressure drop in the flow (Wang et al., 2004). Early 

works such as Wrobel & McManus (1961) have shown that the accurate 

understanding of wave structure and behavior leads to more accurate interfacial 

shear modeling. 

Furthermore, a secondary irregular wavy structure known as ripples are 

present in the wavy annular film. They are characterized by low amplitudes, high 

frequencies, and travel more slowly in a three-dimensional manner over the film 
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(Schubring & Shedd 2008). Ripples are said to always be generated in the wake 

of disturbance waves and are absorbed by subsequent disturbance wave 

structures (Alekseenko et al., 2009). Additionally, the onset of entrainment and 

deposition is largely known to be caused by the detachment of droplets from the 

crests of disturbance waves (Azzopardi, 1997). This is caused by the complex 

interaction between the gas core flow, ripples, and disturbance waves 

(Woodmansee & Hanratty, 1969; Alekseenko et al., 2013). Recent works 

employing non-intrusive measurement techniques have been able to obtain three-

dimensional interfacial wave data. Fershtman et al. (2020) performed a three-

dimensional reconstruction of the interface, allowing for the identification of three 

types of wave formations, namely ripples, disturbance waves, and rogue waves. 

They describe rogue waves as infrequent solitary disturbance waves flowing in a 

ripple dominated interface. 

The wave dynamics also affect the liquid film and gas core velocity profiles. 

Several authors have investigated the velocity profile shapes in vertical annular 

flow. Gill et al. (1964) have carried out measurements of the gas velocity 

distribution for air-water flow, where a clear parabolic shape is observed. The 

influence of the gas and liquid flow rate were also investigated and showed that an 

increase in the gas flowrate raises the magnitude of the profile, while preserving 

the shape, and an increase in liquid flowrate alters the parabolic shape. Azzopardi 

& Teixeira (1994) performed velocity profile measurements for both single phase 

air flow and two-phase air-water flow. Reasonable agreement was obtained with 

the 1/7 power-law profile. 

Vassalo (1997) obtained the liquid velocity distribution on several 

configurations and compared results to the universal velocity profile (UVP), 

obtaining reasonable agreement. Ashwood et al. (2015) measured the liquid 

velocity profile shape on a square cross-section configuration, where results did 

not agree well to the UVP. They propose a novel velocity profile correlation that 

adjusts to their experimental data. Cioncolini et al. (2015) evaluated the results 

presented in Ashwood et al. and proposed new bounds for the viscous sublayer, 

buffer and turbulent layers based on the data. 

There are several parameters that can be used to characterize interfacial 

waves in annular flow, such as structural quantities, e.g., wave height, base height, 

spacing; and dynamic features such as wave and film velocity, entrainment and 

deposition rates, frequency (Wang et al., 2004). Those parameters change 

continuously along the flow development. Thus, to obtain accurate theoretical 

models for the physics of annular flow systems, detailed axial measurements of 
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the local flow features of the liquid film are paramount. 

Fore & Dukler (1995) investigated the entrainment and deposition of droplets 

in the liquid film to determine the physical mechanism of momentum transfer from 

the process of droplet deposition. 

Wolf et al. (2001) performed air-water annular flow experiments on a 31.8 

mm internal diameter configuration. They have observed that the complex changes 

in the film begin to occur within a range of 50D, and entrainment begin to develop 

between 100-300D. 

Hazuku et al. (2008) have performed an extensive experimental study of the 

liquid film behavior, providing a large dataset of statistical quantities such as 

maximum, average, and sublayer film thickness, wave frequency, interfacial shear 

stress, etc.  

Belt et al. (2010) performed an experimental study of vertical annular flow in 

a 0.05m diameter test section. Statistical data for several characteristics of 

disturbance waves, such as height, length, velocity, frequency is obtained. They 

observe that disturbance waves are located randomly in space, within a Gamma 

distribution. They speculate that this behavior indicates that the distribution of 

disturbance waves in space is a result of several processes of coalescence 

between pre-existing waves. 

Zhao et al. (2013) have performed experiments for air-water annular flow in 

a short 2m test section to investigate the three-dimensional behavior of the 

interfacial structures. They evaluate the spectral content of the interface and the 

shifts in dominant frequencies with axial development. 

Wang et al. (2021) investigated the wave characteristics in high liquid flow 

rate upward annular flow. Liquid superficial velocities range from 0.02 m/s to 2 m/s. 

They perform a comprehensive review of existing models for predicting statistical 

data in wispy annular flow. 

The advancement of high computational power hardware in recent years has 

allowed for the development of highly detailed three-dimensional numerical studies 

of multiphase flows in pipelines. This approach may tackle some of the limitations 

of instantaneous measurements in experimental studies, such as the availability of 

data on only slices of the domain.  

Although 2D approaches have been applied for modeling annular flow in 

earlier stages (Han & Gabriel, 2007), the three-dimensional nature of physical 

phenomena such as droplet entrainment and turbulence has led to the adoption of 

a 3D computational fluid dynamics (CFD) approach. For these types of simulations, 

authors would typically use a VOF or Level-Set approach. Rodriguez (2009) 
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performed an axisymmetric, periodic direct numerical simulation (DNS) of annular 

flow in a short domain using the Level-Set method. Liné et al. (2013) performed 

fully three-dimensional simulations of the development of horizontal slug flow from 

an initially stratified configuration with the Level-Set method. The goal of these 

works was to extract the three-dimensional fields to assess and aid in the 

improvement of simplified models for 1D simulations. Kumar et al., (2016) 

performed 3D laminar vertical annular flow simulations with VOF to capture the 

physical mechanisms of droplet entrainment from the interfacial waves. A flow 

pattern map containing information regarding the physical mechanisms 

responsible for transition from annular to droplet annular flow is devised. Fan et al. 

(2019) employed the VOF method with the Reynolds Averaged Navier Stokes 

(RANS) turbulence modeling to predict the wave dynamics of downward annular 

flow, comparing their results to the work of Alekseenko et al. (2015). Fan et al. 

(2020) performed an experimental and 3D CFD study of downward annular flow 

with a novel turbulence damping model for RANS. They evaluated the predicted 

wave structures against the measured data and found good qualitative agreement. 

Rocha (2020) performed 3D simulations of slug flow in horizontal pipes with the 

VOF method and obtained several correlations for closure models for 1D 

methodologies from the three-dimensional data. Saxena & Prasser (2020) 

employed the VOF method with both Large Eddy Simulation (LES) and unsteady-

RANS turbulence models to simulate annular flow in a double sub-channel 

geometry of a fuel rod bundle in BWRs. They found that the time averaged liquid 

film thickness data with the LES model best agreed with experimental data.  

For large scale industrial simulations, however, the feasibility of three-

dimensional approaches breaks down as the computational power required for 

such tasks becomes unattainable. Additionally, for most engineering applications, 

the microscopic details of the flow are irrelevant, and average and statistical 

quantities of the flow are sufficient to yield accurate predictions. For that purpose, 

one-dimensional simulations are widely employed. The time and phase average 

class of numerical methods is very popular for the development of 1D formulations. 

As previously mentioned, three main models stand out: the homogeneous, the 

drift-flux, and the two-fluid model. 

The homogeneous model solves one set of conservation equations for the 

mixture, i.e., it considers that both phases act as a single fluid, flowing with the 

same velocity. Although this method provides simpler and more computationally 

efficient predictions, it is heavily reliant on empirical correlations. The drift-flux 

approach models the relative motion between the phases by introducing 
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constitutive relations corrected by empirical correlations. In this model, good 

agreement can be obtained when there is strong coupling between the phases. In 

separated flow such as stratified or annular, the drift-flux model offers inaccurate 

predictions.  

Lastly, the two-fluid model solves one set of mass, momentum, and energy 

equations for each of the phases present. The coupling between the phases is 

modeled through the interfacial transfer terms. This constitutes a more accurate 

and sophisticated description of the flow, as it models the velocity fields separately. 

The standard two-fluid model was first introduced in the work of Ishii (1975) for 

applications in the nuclear industry, having since then been adopted by numerical 

codes in the oil & gas industry to solve pipeline flows. Prominent multiphase 

commercial codes that employ this method include CATHARE (Micaelli, 1987), 

OLGA (Bendiksen et al., 1991), LedaFlow (Danielson et al, 2005) and ALFAsim 

(Pasqualette et al., 2019). 

Continuous effort has been made to accurately predict the slug flow regime 

in pipelines, which led to several approaches within the two-fluid framework. Unit-

Cell (Dukler & Hubbard, 1975) and Slug-Tracking (Nydal, 2012) approaches have 

been developed to work-around the small length and time scales of slug flows, 

avoiding the resolution required to capture small scale phenomena. They rely on 

empirical closure relations, which limits the generality of the models (Nieckele & 

Carneiro, 2017). For example, the Unit-Cell methodology requires flow pattern 

criteria to decide whether slug flow is locally present in the pipe and constitutive 

relations to determine the average characteristics of the slugs and bubbles. In 

Slug-Tracking, the criteria for slug generation are imposed by a predetermined 

model, e.g., based on a flow pattern map. Slugs are tracked using a Lagrangian 

reference frame, and the information is injected into the mass and momentum flux 

calculations at the position of the bubbles’ nose and tail (Bendiksen, 1984). The 

Slug-Capturing methodology (Issa & Kempf, 2003), however, captures the slug 

formation automatically from the natural growth of hydrodynamic instabilities into 

waves on stratified flows. Therefore, the model does not require empirical 

correlations, as the formation and propagation of slugs are predicted, not imposed 

(Nieckele & Carneiro 2017). This methodology has been expanded to more 

complex applications such as slug flow with droplet entrainment and deposition 

modeling (Bonnizi, 2003; Siqueira, 2019) and three phase flow (Bonnizi & Issa, 

2003; Moraes et al., 2020).  

In recent years, there has been significant advancement in generalizing this 

methodology to other flow pattern transitions, such as the transition to slug, 
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annular, bubbly flows in horizontal pipes (Bonnizi et al., 2009). Emamzadeh & Issa 

(2013) investigated the transition from stratified to annular flow in horizontal pipes. 

Nieckele et al. (2013) employed this methodology to explore the initiation and 

development of slug flow and provided detailed predictions of statistical 

parameters of slugs in horizontal pipes. Han & Guo (2015) explored the onset of 

hydrodynamic and terrain-induced slugs in a pipeline-riser system. Fontalvo et al. 

(2016) used the Regime Capturing technique to predict the interfacial wave 

behavior of vertical annular flows and validated their models against the 

experimental data due to Zhao et al. (2013). Pasqualette et al. (2017) performed 

numerical studies of stratified flows with high viscosity oils, capturing the transition 

to stratified wavy. They have tested existing interfacial shear stress correlations 

against experimental data. Nieckele & Carneiro (2017) expanded the methodology 

with predictions of horizontal stratified and slug flow as well as vertical annular and 

slug flows. They tested numerical spatial and temporal discretization schemes and 

coined the term Regime Capturing to characterize this new methodology. Good 

agreement was found against the reference data. Ferrari et al. (2017) proposed a 

five equation 1D two-fluid model for Slug Capturing. The fifth equation performs 

the advection of the gas volume fraction. They successfully validate the 

methodology against slug formation and propagation tests in horizontal 

geometries. Leporini et al. (2021) expanded on the work of Ferrari et al., evaluating 

the novel method with pure vertical hydrodynamic slug flow cases. Good 

agreement was obtained against experimental data, particularly for slug mean 

frequency and mean velocity.  

The use of very small grid cells in Regime Capturing methods is in itself a 

starting point on a discussion of stability and ill-posedness of the 1D two-fluid 

model. As mentioned, the averaging processes remove information from the 

system of equations and renders the model ill-posed for certain configurations. In 

practical terms, ill-posedness manifests as an inability to obtain a mesh convergent 

solution. 

In fact, the standard 1D two-fluid model is known to be unconditionally ill-

posed for vertical geometries, and care must be taken when using high resolution 

meshes to capture regime transitions. A common strategy as a workaround is to 

limit temporal and spatial refinement, which is especially desirable for long pipeline 

simulations where computational power is demanding. In these cases, the 

numerical schemes provide a stabilizing effect that renders the model numerically 

well posed. In Regime Capturing methodologies, however, this pragmatic solution 

is limited to configurations where the flow transition does not depend on the growth 
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of instabilities. For example, Issa & Galleni (2015) found that for vertical slug flows, 

even in an ill-posed system, a mesh independent solution can be attained for a 

range of practical mesh sizes, Δ𝑥 𝐷⁄ ≤ 0.1.  

Therefore, a study on the hyperbolicity of the differential formulation of the 

two-fluid model is paramount to understand and solve the underlying problems that 

lead to ill-posedness. The theoretical background on the stability-hyperbolicity of 

the 1D Two-Fluid model will be explored in more detail in further chapters. In short, 

the characteristics are the roots of a linear representation of the system of partial 

differential equations (PDEs). They dictate the rate with which information 

propagates in space and time and are key to the determination of a system’s 

hyperbolicity: if the characteristics are real, the system is hyperbolic/well-posed; if 

one of them is complex, the system is elliptic/ill-posed (Prosperetti & Tryggvason, 

2007). 

There are different ways to test the hyperbolicity of a model. A basic test is 

the analysis of characteristics, where a linearized system is obtained, and the 

characteristic roots are extracted. This approach has been used by Issa & Kempf 

(2003) and Bonnizi (2003) with the basic 1D Two-Fluid Model and it has shown 

that the problem is conditionally well-posed (real roots) if the hydrostatic pressure 

profile is imposed. Other works have performed characteristic analyses on the 

Two-Fluid Model within the Regime Capturing approach (Carneiro, 2006; Fontalvo, 

2016; Pasqualete, 2017).  

The mechanism through which ill-posedness manifests is an unbounded 

growth of small wavelength perturbations in the system, which hinders the physical 

representation of the problem. Linear Stability Theory (LST) deals with the 

emergence of these small-scale disturbances in an otherwise undisturbed flow. 

The well-known Method of Small Disturbances introduces infinitesimal 

perturbations into stable flow fields and quantifies the growth or decay of these 

perturbations under a system of mathematical or discrete equations. The result is 

a dispersion relation that correlates the growth rates with a frequency or 

wavelength spectrum. In ill-posed systems, the growth rate will increase radically 

for critical frequencies/wavelengths. The Inviscid and Viscous Kelvin-Helmholtz 

analyses are employed to the differential system of equations to evaluate the 

stability of the mathematical system. The von Neumann analysis, however, is 

applied to the discrete system, and accounts for the numerical effects of the 

discretization schemes, e.g., numerical viscosity. Considerable effort has been 

made to explore the hyperbolicity through a stability lens. Several authors have 

employed the IKH analyses to analyze the behavior of small imposed sinusoidal 
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interfacial waves in stratified flows and derive a criterion for the onset of ill-

posedness (Milne-Thomson, 1968; Kordyban & Ranov, 1970; Taitel & Dukler, 

1976). 

Barnea & Taitel (1988) evaluated the stability of co-current and counter-

current annular flow and proposed a simple transient formulation that neglects the 

Kelvin-Helmholtz contribution to instability. Barnea & Taitel (1993) devised inviscid 

and viscous formulations for the Kelvin-Helmholtz instability applied to stratified 

flow. They produced a stability map for varying liquid and gas superficial velocities, 

showing the neutral-stability regions for both formulations, and how they intersect 

with flow pattern transition, as interpreted in the work of Barnea (1991).  

Liao et al. (2008) performed a discrete stability analysis on a stratified 

configuration using the two-fluid model with three spatial discretization schemes, 

namely the 1st order and 2nd order Upwind, Central Difference and the QUICK 

scheme. They observe differences in stability from the different Upwind schemes, 

where the 1st order Upwind excessively damps the solution, and the 2nd order 

Upwind is inaccurate due to its unstable nature. They assert that the instabilities 

due to ill-posedness trigger the unbounded growth of round-off errors, effectively 

rendering the physical solution unusable. 

Fullmer et al. (2014) performed differential and discrete stability analyses to 

assess the inclusion of stabilizing parameters such as pressure jump due to 

surface tension, dynamic pressure, numerical viscosity, etc. under Kelvin-

Helmholtz instability conditions. They propose a criterion for assessing the 

suitability of the numerical scheme for simulations of stratified flows. They assert 

that artificial viscosity can over-stabilize the system, particularly in coarser meshes, 

and that a physical dissipation mechanism, i.e., Reynolds stresses, may be a more 

scientific approach. 

Galleni & Issa (2015) present the differential and discrete stability analyses 

to study the ill-posedness of slug flow in vertical pipes. They state that the 

discretization of the equations introduces a cut-off limit to the growth of instabilities, 

which renders the system numerically well posed for practical mesh sizes. For 

mesh sizes Δ𝑥 𝐷⁄ ≪  0.1 the ill-posedness will eventually manifest.  

Sanderse et al. (2017) performs a stability analysis through an automated 

von Neumann method that does not require the standard analytical derivations. 

Additionally, they introduced the so-called Discrete Flow Pattern Map, that 

determines the degree to which the effective stability regions differ from the 

differential theoretical regime. They observe that flows within the well-posed 

unstable region can develop to become ill-posed, which may limit the application 
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of the Regime Capturing techniques. 

Kushnir et al. (2017) evaluates the introduction of closure relations and their 

influence on the stability of stratified flows. They argue that the tuning of these 

parameters may allow the two-fluid model to accurately reproduce the long wave 

neutral stability curve. 

In fact, the effect of closure models on the well-posedness of the system is 

a very important object of study. Several authors have devised formulations that 

compensate for some physical parameters that were missing from the standard 

model. These closure models are, to some degree, specific to a certain flow 

pattern, or are restricted to a particular range, e.g., Reynolds number. For instance, 

the interfacial shear stress is a very important closure relation. It is defined in terms 

of the Fanning friction factor, 𝜏𝑖 = 1 2⁄ 𝑓𝑖𝜌𝐺|𝑈𝐺 −𝑈𝑙𝑓|(𝑈𝐺 − 𝑈𝑙𝑓), where 𝑓𝑖 is the 

interfacial friction factor, 𝜌𝐺 is the gas density, 𝑈𝐺 is the gas phase velocity, and 

𝑈𝑙𝑓 is the liquid film interface velocity. The adequate modeling of 𝜏𝑖 is one of the 

most challenging tasks in the development of the Two-Fluid model (Pasqualette, 

2017), as it characterizes the momentum exchange between the gas core and the 

liquid film. Thus, it must account for the effect of interfacial waves in the flow, 

although the underlying physical mechanisms are not yet fully understood. Several 

authors have devised formulations for the interfacial friction factor 𝑓𝑖 for annular 

flow. Wallis (1969) proposed a widely used correlation, using an analogy of single-

phase flow to incorporate turbulence in rough pipes, though its validity is limited to 

a small range of film thickness values. Whalley & Hewitt (1978) expanded on the 

work of Wallis and included a term to consider the density ratio in their formulation. 

Fore et al. (2000), also based on the Wallis correlation, included a dependence in 

the gas Reynolds number. Belt et al. (2009), however, argued that a dependence 

on Reynolds number is unphysical. They also propose a formulation that correlates 

the sand-grain roughness to the frontal area of the disturbance waves. Aliyu et al. 

(2017) proposed a correlation based on the gas Reynolds and Froude numbers. 

Ju et al. (2019) developed a correlation based on the liquid and gas Weber 

numbers. They argue that the dependence of existing correlations on film thickness 

adds additional uncertainty to the model. Ribeiro et al. (2021) performed an 

assessment of existing correlations with high liquid viscosity test cases, comparing 

results of pressure drop, film thickness and gas void fraction. They conclude that 

the Belt et al. correlation performed best for 100 mPa s viscosity liquids, whereas 

a correlation proposed by Moeck (1970) obtained more accurate results for the 200 

mPa s viscosity case. 
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There has also been some effort to accurately model the liquid film interfacial 

velocity. It is common to approximate it as the liquid phase velocity 𝑈𝐿. Fowler & 

Lisseter (1992) proposed an approximation of 𝑈𝑙𝑓 = 2𝑈𝐿. Belt et al. (2009) 

correlated the liquid film velocity with the characteristic velocity of disturbance 

waves, and Berna et al. (2014) proposed a novel expression for the wave velocity. 

Wang et al. (2020) argue that existing wave velocity correlations would greatly 

underpredict the experimental data for wispy annular flow. They then propose a 

novel correlation based on high liquid film velocity annular flow data. 

The difference between the average phase and interfacial pressure 𝛥𝑃𝑘 =

 (𝑃𝑘 − 𝑃𝑘𝑖), is modeled in horizontal pipe as a quantity proportional to the 

hydrostatic pressure variation in the cross-section. For vertical flows, this 

difference is often modelled as a dynamic pressure. Bestion (1990) proposed a 

dynamic pressure term proportional to the difference between the gas and liquid 

volume fraction and velocities for separated flows. Fowler & Lisseter (1992) 

devised a dynamic pressure model from the Bernoulli equation, as a function of 

the wave velocity. Fontalvo et al. (2020) coupled the wave velocity correlation due 

to Berna et al. with the Fowler & Lisseter dynamic pressure model for vertical 

annular flow configurations, which yielded very good agreement with experimental 

data. 

We note that the 1D Two-Fluid formulation due to Fowler & Lisseter accounts 

for the shape of the velocity profile in the liquid film. The standard area averaged 

model assumes that both liquid and gas velocity profiles are flat. The accounting 

for the profile shape can be done through the momentum flux parameter, or profile 

shape factor, 𝐶ℓ (where the subscript ℓ represents either the liquid phase 𝐿 or the 

gas phase 𝐺) which will be explored in more detail in a later chapter. It is defined 

as  𝐶ℓ = 𝐴∫𝑢ℓ
2 𝑑 𝐴 /[ (∫ 𝑢ℓ 𝑑 𝐴 )(∫ 𝑢ℓ 𝑑 𝐴 )], where 𝑢ℓ is the phase velocity. 

Several authors have explored the influence of the momentum flux parameter 

(Song & Ishii, 2000; Montini, 2011). Song & Ishii (2001a) have shown that the 

incompressible 1D two-fluid model is stable to the short wavelength perturbations 

if appropriate shape factors are used. They have devised shape factors for the 

liquid phase from parabolic velocity profiles for different flow patterns and argue 

that the parameter holds constant throughout the domain. For annular flow, a value 

of approximately 1.05 was calculated.  

Issa & Montini (2010) analyzed the shape factor for horizontal flows and 

concluded through a stability analysis that liquid factor, 𝐶𝐿, greater than unity has 

a positive effect towards the well-posedness of the system, whereas a 𝐶𝐺 has an 
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opposite effect. 

Montini (2011) tested a range of momentum flux parameter values for various 

horizontal flow test cases, and proposed values that would ensure well-posedness 

from a stability sense for these cases. A 𝐶𝐿 of 1.65 was shown to render nearly the 

entire slug-flow area in a horizontal flow pattern map well-posed. However, care 

must be taken in ensuring the physical validity of the values chosen. As noted in 

Montini (2011), the shape factors that maximize well-posedness in a flow pattern 

map greatly overpredict the physically accurate values obtained from integration of 

velocity profiles. 

Fontalvo et al. (2020) evaluated different momentum flux parameter values 

for annular flow, and concluded that a value close to unity, 1.05, yielded the closest 

agreement to statistical experimental data. Castello Branco et al. (2021) expanded 

on this work by evaluating closure relation through the lens of LST, aiming to 

understand their impact on wave formation. Results have shed some light into both 

linear and nonlinear behaviors of the momentum flux parameter in numerical 

simulations. Both works suggest that the hypothesis of a constant values defined 

a priori should be assessed further. It is expected that the parameter should 

depend on the local flow field  

Some works have tackled this issue by using pre-integrated models from 

velocity profiles to generate an instantaneous 𝐶ℓ (ℓ = 𝐿, 𝐺) value. Kushnir et al. 

(2017) devised a pre-integrated model based on a parabolic velocity profile to 

calculate the shape factors for stratified flows. Bonzanini et al. (2019) used the pre-

integrated model proposed by Biberg (2007) to predict the instantaneous shape 

factors for stratified and slug flow configurations. Further, we note that the 

application of variable shape factors in upwards annular flow have not yet been 

explored in the literature.  

 Summary 

This literature review chapter explored the main advancements in 

characterization of vertical annular flows through experimental studies, highlighting 

works that provide useful statistical quantities and temporal data that can be used 

to validate numerical methodologies (e.g., Fore & Dukler, 1995; Wolf et al., 2001; 

Hazuku et al. 2008; Belt et al., 2010; Zhao et al., 2013; Wang et al., 2021). Further, 

recent three-dimensional CFD studies are briefly discussed, where promising 

works that obtained qualitatively similar results to experimental data are highlighted 

(e.g., Kumar et al., 2016; Fan et al., 2019; Fan et al., 2020; Saxena & Prasser, 
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2020).  

The well-known one-dimensional approaches employed in industrial 

applications are discussed, with particular emphasis to the Two-Fluid Model. The 

Regime Capturing Methodology is outlined and an exposition of its capability to 

accurately predict the transition of flow regimes is given. A stream of works that 

have successfully employed it in test cases are listed and reviewed (e.g., Issa & 

Kempf, 2003; Bonnizi, 2003; Bonnizi & Issa, 2003; Nieckele et al., 2013; Han & 

Guo, 2015; Pasqualette et al., 2017; Nieckele & Carneiro, 2017; Fontalvo et al., 

2020). The stability-hyperbolicity problem of the 1D Two-Fluid Model is also briefly 

discussed. The use of Linear Stability Theory as a tool to explore the effects of 

closure relations is also discussed, and promising works in the field are highlighted 

(Barnea & Taitel, 1993; Liao et al., 2008; Fullmer et al., 2014; Galleni & Issa, 2015; 

Sanderse et al., 2017). 

Finally, a discussion on development of closure relations is performed, and 

we identify a gap in the literature in the development of instantaneous momentum 

flux parameter correlations based on pre-integrated models for vertical annular 

flows. 
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3 MATHEMATICAL MODEL 

The present work focuses on the study of vertical upward annular flow in 

pipelines. As previously mentioned, oil and gas wells and pipelines – in practical 

applications – can extend to several kilometers, which allows for the common 

approximation to consider that most variations of relevant flow quantities occur in 

the axial direction. This justifies the use of one-dimensional approaches to model 

flows in pipelines. Moreover, one of the more important phenomena of annular 

flow, namely the development of large interfacial waves, is known to behave in a 

circumferentially coherent manner far from the inlet, i.e., the disturbance waves 

vary mostly axially (Zhao et al., 2013).  

The Two-Fluid Model (Ishii, 1975; Ishii & Mishima, 1984) is employed here 

to solve a two-phase annular flow within the Regime Capturing methodology, i.e., 

the development of the interfacial structures is naturally predicted from the growth 

of small instabilities of the system of equations. We argue that this methodology is 

superior to those employed in current commercial codes, such as Slug Tracking 

and Unit-Cell, in which, for example, slug frequencies and lengths must be defined 

a priori. The ongoing development of physically based closure models has 

expanded the use of Regime Capturing to more complex configurations, such as 

vertical annular flows, where the standard model is ill-posed. 

The standard three-dimensional model is obtained through phase averages 

of the Navier-Stokes equations. Volumetric averages are obtained for each phase 

as in the following equation  

⟨𝜙ℓ⟩ =
∫ 𝜙ℓ𝑑∀∀ℓ

∫ 𝑑∀
∀ℓ

 (3.1) 

where 𝜙 is a generic flow quantity, ∀ is the occupied volume and the subscript ℓ is 

a reference to the phase (ℓ = 𝐺 or 𝐿, i.e., gas or liquid phase). The volume fraction 

of phase ℓ is defined as 

𝛼ℓ =
∀ℓ
∀

 (3.2) 

with the following restriction 

𝛼𝐿 + 𝛼𝐺 = 1 (3.3) 
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The one-dimensional model is obtained by performing an area average in 

the cross-section of the pipe. The area average is defined as 

�̅� =
1

𝐴
∫ 𝜙 𝑑𝐴

𝐴

 (3.4) 

The brackets and bar are omitted for simplicity in the following equations. 

The conservation equations for an isothermal flow are defined as in Ishii & Hibiki 

(2011) for the gas and liquid phases, and the phases are coupled through 

interfacial transfer terms. The gas and liquid mass conservation equations are 

𝜕(𝛼𝐺𝜌𝐺)

𝜕𝑡
+
𝜕(𝛼𝐺𝜌𝐺𝑈𝐺)

𝜕𝑥
= 0 (3.5) 

𝜕(𝛼𝐿𝜌𝐿)

𝜕𝑡
+
𝜕(𝛼𝐿𝜌𝐿𝑈𝐿)

𝜕𝑥
= 0 (3.6) 

where 𝜌 and 𝑈 are the density and phase velocity, respectively. 𝑡 and 𝑥 are the 

time and spatial axial coordinates. The linear momentum equations for upward 

vertical flow are defined as 

𝜕(𝛼𝐺𝜌𝐺𝑈𝐺)

𝜕𝑡
+
𝜕(𝐶𝐺𝛼𝐺𝜌𝐺𝑈𝐺

2)

𝜕𝑥
= −𝛼𝐺

𝜕𝑃𝐺𝑖
𝜕𝑥

 

−
𝜕𝛼𝐺(𝑃𝐺 − 𝑃𝐺𝑖)

𝜕𝑥
− 𝛼𝐺𝜌𝐺𝑔 −

𝜏𝑖𝑆𝑖
𝐴

 

(3.7) 

𝜕(𝛼𝐿𝜌𝐿𝑈𝐿)

𝜕𝑡
+
𝜕(𝐶𝐿𝛼𝐿𝜌𝐿𝑈𝐿

2)

𝜕𝑥
= −𝛼𝐿

𝜕𝑃𝐿𝑖
𝜕𝑥

 

−
𝜕𝛼𝐿(𝑃𝐿 − 𝑃𝐿𝑖)

𝜕𝑥
− 𝛼𝐿𝜌𝐿 𝑔 −

𝜏𝑤𝑆𝐿
𝐴

+
𝜏𝑖𝑆𝑖
𝐴

 

 

(3.8) 

where 𝐶ℓ is the momentum flux parameter of phase ℓ, 𝑃ℓ represents the average 

phase pressure, 𝑃ℓ𝑖 represents the phase interface pressure, 𝑔 is the gravity 

acceleration, 𝜏𝑤 and 𝜏𝑖 are the wall and interfacial shear stresses. 𝑆𝐿 and 𝑆𝑖 are 

the liquid phase wetted perimeter and interface perimeter. These parameters are 

defined in the next sections. 

 Geometric Parameters 

For an annular flow pattern, the geometrical configuration illustrated in Figure 

3.1 is considered 
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Figure 3.1 – Geometric Parameters. 

where 𝐷 is the pipe diameter and ℎ𝐿 the liquid film thickness. The gas diameter is  

𝐷𝐺 = 𝐷 − 2ℎ𝐿 (3.9) 

The liquid wetted perimeter 𝑆𝐿is equal to the pipeline perimeter, and the interface 

perimeter is 𝑆𝑖  

𝑆𝐿 = 𝜋𝐷        ;         𝑆𝑖 = 𝜋(𝐷 − 2ℎ𝐿)    (3.10) 

The phase hydraulic diameters can be written as a function of the areas and 

perimeters 

𝐷ℎ𝐺 =
4𝐴𝐺
𝑆𝑖
       ;         𝐷ℎ𝐿 =

4𝐴𝐿
𝑆𝐿
    (3.11) 

where 𝐴𝐺 and 𝐴𝐿 are the cross-section phase areas. 

 𝐴𝐺 =
𝜋

4
 𝐷𝐺

2      ;      𝐴𝐿 =
𝜋

4
 𝐷2 − 𝐴𝐺      (3.12) 

The liquid film thickness can be related to the gas volumetric fraction with the 

following equation 

ℎ𝐿 =
𝐷

2
(1 − √𝛼𝐺)   (3.13) 

The Reynolds numbers can be defined based on the phase velocity or phase 

superficial velocity 

𝑈𝑠ℓ = 𝛼ℓ𝑈ℓ  (3.14) 

The Reynolds numbers for each phase and interface are defined as 
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𝑅𝑒𝑠𝐿 =
𝜌𝐿|𝑈𝑠𝐿|𝐷

𝜇𝐿
   ;       𝑅𝑒𝑠𝐺 =

𝜌𝐺|𝑈𝑠𝐺|𝐷

𝜇𝐺
   (3.15) 

𝑅𝑒𝐿 =
𝜌𝐿|𝑈𝐿|𝐷ℎ𝐿

𝜇𝐿
  ;      𝑅𝑒𝐺 =

𝜌𝐺|𝑈𝐺|𝐷𝐺
𝜇𝐺

   
(3.16) 

𝑅𝑒𝑖 =
𝜌𝐺|𝑈𝐺 − 𝑈𝐿|𝐷ℎ𝑖

𝜇𝐺
 

(3.17) 

 Boundary and initial conditions 

Boundary and initial conditions must be defined in order to numerically solve 

the system of equations. In the inlet boundary conditions, the liquid and gas 

superficial velocities are imposed. The equilibrium film height is calculated from the 

superficial velocities and geometrical parameters. In the outlet boundary condition, 

the pressure is imposed. 

Further, as initial conditions, the boundary values are prescribed to the entire 

computational domain. 

 Closure Models 

Due to the averaging process of the 1D Two-Fluid Model, several parameters 

must be defined/modeled to close the one-dimensional system of equations and 

compensate the loss of information. These parameters are referred to as closure 

relations, and are defined below: 

• Interfacial shear stress 𝜏𝑖 

• Wall shear stress 𝜏𝑤 

• The difference between phase and interface pressures (𝑃ℓ − 𝑃ℓ𝑖) 

• The pressure jump over the interface (𝑃𝑖𝐺 − 𝑃𝑖𝐿) 

• Momentum flux parameters 𝐶ℓ 

• Fluid densities 𝜌𝐿 and 𝜌𝐺. 

 These parameters are modeled with simplified analytical or empirical 

formulations, that are, at times, limited to a particular flow configuration of interest. 

Significant effort has been made to develop physically accurate closure models to 

reintroduce information that has been lost during the averaging processes. 

Moreover, the effect of these parameters on the hyperbolicity of the system is of 

paramount importance and is the object of study of the present work.   
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3.3.1 Density 

In most applications, the liquid phase can be approximate as constant. On 

the other hand, the gas density dependence in pressure is more significant and it 

is modelled here by the ideal gas law, as in many recent studies with gas-liquid 

two-phase flows (Issa & Kempf, 2003; Carneiro et al., 2011; Pasqualette, 2017; 

Fontalvo et al., 2020).  

𝜌𝐺 =
𝑃𝐺

𝑅𝐺𝑇𝑟𝑒𝑓
    (3.18) 

where 𝑃𝐺 is the gas bulk pressure, 𝑅𝐺 is the gas constant, and 𝑇𝑟𝑒𝑓 is the reference 

temperature for isothermal flows. Since the pressure variation in the gas cross-

section is small, the gas pressure is approximated by the interfacial gas pressure 

𝑃𝐺 = 𝑃𝐺𝑖. 

3.3.2 Wall shear stress 

The wall shear stress in the RHS of liquid momentum equation is defined in 

terms of a Fanning friction factor for the liquid phase, fL: 

𝜏𝑤 =
1

2
𝜌𝐿  𝑓𝐿 𝑈𝐿  |𝑈𝐿| (3.19) 

Note that the modulus of the liquid velocity was employed here, to change the 

direction of the shear stress, in the event of a reverse flow. 

Based on the recommendations of Inácio et al. (2012), Berna et al. (2014), 

Alves et al. (2012) and Fontalvo et al. (2020), the liquid friction factor correlation 

for vertical flows is defined as in Kosky & Staub (1971): 

𝑓𝐿 =

{
  
 

  
 

16

𝑅𝑒𝑠𝐿
                    𝑅𝑒𝑠𝐿 < 50

12.7937

𝑅𝑒𝑠𝐿
−0.9428           50 ≤  𝑅𝑒𝑠𝐿 < 1483

0.081

𝑅𝑒𝑠𝐿
−0.25                   1483 ≤ 𝑅𝑒𝑠𝐿

 (3.20) 

3.3.3 Interfacial shear stress 

The interfacial shear stress in the RHS momentum equations for the gas and 

liquid is also defined in terms of the Fanning friction factor as 
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𝜏𝑖 =
1

2
𝜌𝐺  𝑓 𝑖(𝑈𝐺 − 𝑈𝑙𝑓)|𝑈𝐺 − 𝑈𝑙𝑓| (3.21) 

where 𝑓𝑖 is the interfacial friction factor and 𝑈𝑙𝑓 is the liquid film velocity at the 

interface.  

Several correlations are available in the literature to model the interfacial 

friction factor, with varying rates of complexity. In general, most of the available 

correlations attempt to model the friction factor as a function of the single-phase 

gas flow friction factor and the liquid film thickness. The effect of the liquid film is 

modeled by assuming an interface roughness effect on the gas, similar to that of a 

solid rough wall. The elements of the interface roughness in annular flow are the 

interfacial waves, however, the difficulty to predict the wave heights has led many 

authors to propose correlations based on the film thickness (Sun et al., 2018). 

Fontalvo et al. (2020) evaluated some prominent formulations based on the 

recommendations of Alves et al. (2017): 

(i) Wallis (1969) (Modified) 

𝑓𝑖 = 𝑓𝑖𝐼 =
0.079

𝑅𝑒𝑠𝐺
0.25  [1 + 180(1 − √𝛼𝐺)] (3.22) 

(ii) Whalley & Hewitt (1978) 

𝑓𝑖 = 𝑓𝑖𝐼𝐼 =
0.079

𝑅𝑒𝑠𝐺
0.25  [1 + 12 (

𝜌𝐿
𝜌𝐺
)
1/3

(1 − √𝛼𝐺)] (3.23) 

(iii) Belt et al. (2009) 

𝑓𝑖 = 𝑓𝑖𝐼𝐼𝐼 = 2[3.413 × 10
−4 + 0.579(1 − √𝛼𝐺)] (3.24) 

The liquid film velocity at the interface 𝑈𝑙𝑓 in Eq. (3.21) is usually 

approximated as the liquid phase velocity 𝑈𝐿. The present work evaluates other 

propositions based on works from the literature. Fowler & Lisseter (1992) 

suggested 𝑈𝑙𝑓 = 2 𝑈𝐿, and Belt et al. (2009) recommend considering the wave 

velocity. Here, the wave velocity proposed by Berna et al. (2014) is employed. 

(a) 𝑈𝑙𝑓 model 1 

𝑈𝑙𝑓 = 𝑈𝐿  (3.25) 

(b) 𝑈𝑙𝑓 model 2 

𝑈𝑙𝑓 = 2 𝑈𝐿 (3.26) 
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(c) 𝑈𝑙𝑓 model 3 

𝑈𝑙𝑓 = 𝑈𝑤𝑎𝑣𝑒 (3.27) 

The correlation for the wave velocity 𝑈𝑤𝑎𝑣𝑒 proposed by Berna et al. (2014) 

presents good agreement to experimental data, and it is given by 

𝑈𝑤𝑎𝑣𝑒 =
√𝜌𝐺  𝑈𝑠𝐺 +√𝜌𝐿  𝑈𝑠𝐿

√𝜌𝐺 +√𝜌𝐿
  

50 𝑅𝑒𝑠𝐿
0.16

𝑅𝑒𝑠𝐺
0.38 𝑆𝑇𝑤

0.13 
 (3.28) 

where 𝑆𝑇𝑤 and 𝑁𝜇 are the surface tension factor and viscosity number. 

𝑆𝑇𝑤 = 0.25     𝑖𝑓   𝑁𝜇  >
1

15

𝑆𝑇𝑤 =
0.028

𝑁𝜇
0.8    𝑖𝑓   𝑁𝜇  ≤

1

15

      ;   𝑁𝜇 =
𝜇𝐿

√𝜌𝐿  𝜎 (𝜎 [𝑔 (𝜌𝐿 − 𝜌𝐺)]⁄ ) 0.5
 (3.29) 

3.3.4 Phase and interface pressure difference  

The relation 𝑃ℓ − 𝑃ℓ𝑖, in the momentum equations corresponds to the 

difference between the average phase pressure and its interface value. For 

horizontal flows, this difference is attributed to a hydrostatic effect (Issa & Kempf, 

2003; Carneiro, 2006; Fontalvo, 2016), and its present in the equations is modeled 

as 

−
𝜕𝛼ℓ(𝑃ℓ − 𝑃ℓ𝑖)

𝜕𝑥
= −𝜌ℓ 𝛼ℓ 𝑐𝑜𝑠 𝛽

𝜕ℎ𝐿
𝜕𝑥

 (3.30) 

For the vertical case, however, the hydrostatic effect is not present. This 

poses a significant problem for the stability of the system, as the absence of the 

hydrostatic pressure term renders the standard model unconditionally ill-posed. An 

alternative is to model the pressure term as a dynamic pressure based on the 

phase and interface relative velocity. Earlier works in this front date back to 

Stuhmiller (1977), and several authors have since improved upon the dynamic 

pressure formulation (e.g., Okawa & Kataoka, 2000). A general form of the term 

can be defined as (Fowler & Lisseter, 1992): 

𝛥𝑃𝑑𝑦𝑛ℓ = 𝑃ℓ − 𝑃ℓ𝑖 = 𝑊𝑓ℓ 𝜌𝑟𝑒𝑓(𝑈𝐿 − 𝑈𝑖)
2 (3.31) 

where 𝑊𝑓ℓ is an empirical parameter, 𝜌𝑟𝑒𝑓 is a reference density and 𝑈𝑖 is the 

interface velocity. Barbeau (2008) performed numerical analyses including a 
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dynamic pressure model, and concluded that for vertical flows, the dynamic pressure 

term is the only stabilizing term that maintains well-posedness.  

Three models from the literature were selected to be evaluated. The Fowler 

& Lisseter (1992) model considers the liquid dynamic pressure term only, i.e., 

𝑊𝑓𝐺 = 0. From recommendations in the literature (see Trapp, 1986; Serizawa & 

Kataoka, 1987), they define the liquid empirical parameter as 𝑊𝑓𝐿 = 0.02 for long 

waves. The reference density as 𝜌𝑟𝑒𝑓 = 𝜌𝐿 and the interface velocity is modeled 

as twice the value of the liquid phase velocity, 𝑈𝑖 = 2𝑈𝐿. 

Bestion (1990) models the dynamic pressure of both phases, defining the 

reference density as a combined average 𝜌𝑟𝑒𝑓 = 𝜌𝑚, where 

𝜌𝑚 =
𝛼𝐿𝛼𝐺𝜌𝐿𝜌𝐺
𝛼𝐺𝜌𝐿 + 𝛼𝐿𝜌𝐺

 (3.32) 

and same empirical constant 𝑊𝑓ℓ = 1.2  is employed for both phases, and the 

interface velocity is approximated as the gas core velocity 𝑈𝑖 = 𝑈𝐺.  

Lastly, Fontalvo et al. (2020) proposed a model based on the Fowler & 

Lisseter, however, the interface velocity carries the wave velocity model proposed 

in Berna et al. (2014), i.e., 𝑊𝑓𝐿 = 0.02; 𝜌𝑟𝑒𝑓 = 𝜌𝐿 and 𝑈𝑖 = Uwave. The three models 

can be resumed as: 

(i) Fowler & Lisseter (1992): 

𝑊𝑓𝐺 = 0   ;      𝑊𝑓𝐿 = 0.02   ;    𝜌𝑟𝑒𝑓 = 𝜌𝐿  ,   𝑈𝑖 = 2 𝑈𝐿  (3.33) 

(ii) Bestion (1990): 

𝑊𝑓ℓ = 1.2 , 𝑤𝑖𝑡ℎ ℓ = 𝐺 𝑎𝑛𝑑 𝐿   ;      𝜌𝑟𝑒𝑓 = 𝜌𝑚 ,   𝑈𝑖 = 𝑈𝐺  (3.34) 

(iii) Fontalvo et al. (2020) 

𝑊𝑓𝐺 = 0   ;      𝑊𝑓𝐿 = 0.02   ;    𝜌𝑟𝑒𝑓 = 𝜌𝐿  ,   𝑈𝑖 = 𝑈𝑤𝑎𝑣𝑒 (3.35) 

3.3.5 Interface pressure jump 

The interfacial pressure term in the momentum equations accounts for the 

pressure jump over the interface due to the gas-liquid surface tension. In a stability 

sense, surface tension acts as a stabilizing force in the system. The physical 

mechanism behind it is that the molecular interactions between the two phases 
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produce a counteracting force to the stretching of the surface through the increase 

in its curvature. This in turn limits the deformation that it undergoes due to external 

forces. The pressure difference is defined by the Young-Laplace equation 

𝑃𝑖𝐺 − 𝑃𝑖𝐿 = 𝜎 𝜅 (3.36) 

where 𝜎 is the surface tension between the phases and 𝜅 is the curvature, which 

is defined as the inverse of the radius of curvature 𝑟𝑐: 

𝜅 = 1 𝑟𝑐⁄  (3.37) 

For a very large curvature radius, i.e., flat surfaces, the effect of surface 

tension is negligible. For annular flow, however, two curvature radii are present, a 

transversal and an axial component. The axial component is responsible for the 

stabilization of the system of equation, contributing to well-posedness. The 

curvature is redefined in terms of both components 

𝜅 = 𝜅1 + 𝜅2 (3.38) 

where 𝜅1 and 𝜅2 represent the axial and longitudinal contributions, respectively. 

The axial curvature value can be estimated based on the liquid film thickness 

(Inada et al., 2004; Carneiro, 2006) 

𝜅1 =
𝜕2ℎ𝐿
𝜕𝑥2

 =
𝜕ℎ𝐿
𝜕𝛼𝐿

𝜕2𝛼𝐿
𝜕𝑥2

+ (
𝜕2ℎ𝐿

𝜕𝛼𝐿
2 )(

𝜕𝛼𝐿
𝜕𝑥

)
2

 (3.39) 

where 

𝜕ℎ𝐿
𝜕𝛼𝐿

=
𝐷

4

1

√𝛼𝐺
       ;      

𝜕2ℎ𝐿

𝜕𝛼𝐿
2 =

𝐷

8

1

𝛼𝐺
3 / 2

 (3.40) 

And the transversal component can be written as 

𝜅2 =
2

𝐷 − 2ℎ𝐿
=

2

𝐷 √𝛼𝐺
 (3.41) 

Several works have investigated the effect of surface tension effects on the 

flow. Montini (2010) performed a Kelvin-Helmholtz stability analysis of the system 

with the surface tension term and observed that it introduces a cut-off for short 

wavelength perturbations. However, numerical results showed that a mesh 

converged solution was not attained. Similarly, Inácio et al. (2012) showed that the 
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pressure jump increases the well-posed region in a stability map only when short 

wavelengths are captured. 

3.3.6 Momentum flux parameter 

In the standard Two-Fluid Model, the averaging process removes information 

regarding the velocity distribution in the cross-section, as only mean values are 

present in the formulation. It is akin to assuming that the velocity profile is 

completely flat for both phases, which may arguably be a reasonable 

approximation for the turbulent gas core flow. However, the complex changes 

occurring in the liquid film (i.e., formation of waves of various sizes) would clearly 

result in large variations in the velocity distribution. 

The multiplying parameter 𝐶ℓ in the convective term in the LHS of the 

momentum equations aims to restore some of that information. It is defined as 

𝐶ℓ =
〈𝑢ℓ
2〉̅̅ ̅̅ ̅̅

〈𝑢ℓ〉̅̅ ̅̅ ̅2
=
〈𝛼ℓ 𝑢ℓ

2〉

𝛼ℓ 𝑈ℓ
2 =

(1 𝐴ℓ)⁄  ∫ 𝑢ℓ
2 𝑑 𝐴ℓ𝐴ℓ

[(1 𝐴ℓ)⁄ ∫ 𝑢ℓ 𝑑 𝐴ℓ𝐴ℓ
]
2 (3.42) 

which removes a common approximation that 〈𝑢ℓ
2〉̅̅ ̅̅ ̅̅ = 〈𝑢ℓ〉̅̅ ̅̅ ̅2 .  

The momentum flux parameter was first introduced by Song & Ishii (2000, 

2001b), and they considered the parameter to be invariant in the flow direction, 

and a constant value based on inlet conditions and flow geometry was proposed. 

The procedure was to determine the gas and liquid momentum flux parameters 

from power law velocity and void fraction profiles. For annular flow, the calculated 

liquid momentum flux parameter 𝐶𝐿 was approximately 1.05, and the gas 

momentum flux parameter 𝐶𝐺 was approximately 1.02. They performed a 

characteristics analysis and showed that for the standard model, i.e., 𝐶𝐿 = 1 and 

𝑃ℓ = 𝑃ℓ𝑖, the model is ill-posed for all conditions except equal phase velocities 𝑈𝐺 =

𝑈𝐿, i.e., no acting interfacial shear. The introduction of a non-uniform velocity profile 

in the liquid phase (𝐶𝐿 > 1) had a positive effect towards stabilizing the system. It 

has been noted, however, that a 𝐶𝐺 > 1 has the opposite effect, and decreases 

that well-posedness region (Song, 2003). We note that even though the gas 

momentum flux parameter destabilizes the flow, no evaluation of its effect on the 

accuracy of the model was carried out. Considering the turbulent nature of the gas 

core flow, the gas shape factor would realistically take a small value (equivalent to 

a turbulent power-law profile) such as 1.02. However, following the 

recommendations of the literature, the present work does not explore 𝐶𝐺. 
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Montini (2011) performed an extensive analysis of the influence of the shape 

factors for horizontal flow through an analysis of characteristics and has shown 

that an aggressive increase in the liquid shape factor, i.e., 𝐶𝐿 = 1.65, value may 

render the entire slug flow region in the flow pattern map well-posed (Figure 3.2). 

They have also observed the destabilizing effect of the 𝐶𝐺 value. Furthermore, 

numerical solutions were obtained by employing a 𝐶𝐿 value that would position the 

pair of superficial velocities just inside the well-posed region. Mesh convergence 

was attained for these cases, whereas the standard model evaluated in Bonnizi 

(2003) for the same configurations did not converge.  

However, the 𝐶𝐿 values required to ensure well-posedness in these cases 

greatly overestimated the physical velocity profiles, and a careful analysis must be 

performed to ensure that physically sound hypotheses are being formulated when 

providing an a priori estimate for the shape factors.  

 

Figure 3.2 – Flow pattern stability map with varying 𝐶𝐿 and 𝐶𝐺 values (Montini, 2011). 

For example, according to Inada et al. (2004), for high gas velocities, the 

velocity profile in the liquid film can be approximated as linear (i.e., Couette flow), 

which results in a 𝐶𝐿 = 1.33 value. For low gas velocities, a parabolic profile with 

zero velocity at the wall and zero derivative at the interface is a reasonable 

approximation, which results in a 𝐶𝐿 value of 1.20. For a turbulent velocity profile, 

the 1/7 power-law velocity profile renders a shape factor of 𝐶𝐿 = 1.02. Several 

authors have numerically evaluated the introduction of the liquid momentum flux 

parameter, with varying rates of success (e.g., Inácio et al., 2012). Fontalvo et al. 

(2020) tested 𝐶𝐿 values of 1.00, 1.05, 1.20 and 1.33 against experimental data, 

and observed that the 1D Two-Fluid Model with 𝐶𝐿 = 1.05 and a dynamic pressure 

model yielded the best agreement with experimental data.  
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The 𝐶𝐿 has been shown to hold significant stabilizing properties. A 𝐶𝐿 > 1 

effectively decreases the relative velocity between the phases, which in turn 

diminishes the interfacial shear and increases the liquid film height.  
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4 A MODEL FOR THE MOMENTUM FLUX PARAMETER 

The inclusion of a momentum flux parameter in the model equations 

reintroduces information regarding the flow distribution. It accounts for the non-

uniformity of the velocity profile and void fraction in the cross-section. However, by 

employing a constant value, there is an implicit assumption that this distribution is 

constant in the axial direction, and it is evident from the formation of interfacial 

waves that the phase and velocity distributions vary throughout the domain.  

Recent studies (Kushnir et al., 2017; Bonzanini et al., 2019) have employed 

pre-integrated models for a local estimation of the liquid and gas momentum flux 

parameter from theoretical velocity profiles. For annular flows, however, this has 

not been sufficiently explored. The current chapter aims to devise a model to better 

introduce information regarding the liquid velocity profiles into the standard Two-

Fluid Model. A good starting point for the derivation is the definition of the phase 

momentum flux parameter 

𝐶ℓ =
(1 𝐴ℓ)⁄  ∫ 𝑢ℓ

2 𝑑 𝐴ℓ𝐴ℓ

[(1 𝐴ℓ)⁄ ∫ 𝑢ℓ 𝑑 𝐴ℓ𝐴ℓ
]
2 (4.1) 

Adapting the equation above for the liquid momentum flux parameter, 

considering the coordinate system of Figure 4.1, yields 

𝐶𝐿 =

1
𝐴𝐿
∫ 𝑢𝐿

2𝑅

𝑟ℎ𝑙
𝑟𝑑𝑟

2 𝜋 [
1
𝐴𝐿
∫ 𝑢𝐿𝑟𝑑𝑟
𝑅

𝑟ℎ𝑙
]
2 (4.2) 

where 𝑟ℎ𝑙 is the distance from the pipe centerline to the liquid film (𝑟ℎ𝑙 = 𝑅 − ℎ𝐿) 

and 𝑅 = 𝐷 2⁄  is the pipeline radius. However, it is more convenient to use a 

coordinate system based on the distance from the wall 𝑦 (𝑟 = 𝑅 − 𝑦). Therefore, 

the integral can be rewritten in terms of 𝑦 as  

𝐶𝐿 =
𝐴𝐿
2 𝜋

 
∫ 𝑢𝐿

2ℎ𝐿
0

(𝑅 − 𝑦)𝑑𝑦

[∫ 𝑢𝐿(𝑅 − 𝑦)𝑑𝑦
ℎ𝐿
0

]
2 (4.3) 
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Figure 4.1 – Coordinate system for the liquid film MFP integration. 

Furthermore, we define nondimensional quantities 𝑦+, 𝑢+, 𝑅+ and ℎ𝐿
+ in 

terms of a friction velocity 𝑢𝜏 = √𝜏𝑤 𝜌𝐿⁄  and kinematic viscosity 𝜈𝐿 = 𝜇𝐿 𝜌𝐿⁄  as 

𝑢+ =
𝑈𝐿
𝑢𝜏
   ;      𝑦+ = 𝑦

𝑢𝜏
𝜈𝐿
   ;    𝑅+ =

𝑅 𝑢𝜏
𝜈𝐿

    ;    ℎ𝐿
+ =

ℎ𝐿𝑢𝜏
𝜈𝐿

 (4.4) 

which results in 

𝐶𝐿 =
𝐴𝐿
2 𝜋

𝑢𝜏
2

𝜈𝐿
2  
∫ (𝑢+)2
ℎ𝐿
+

0
(𝑅+ − 𝑦+)𝑑𝑦+

[∫ 𝑢+(𝑅+ − 𝑦+)𝑑𝑦+
ℎ𝐿
+

0
]
2  (4.5) 

To integrate the momentum flux parameter, a model for the velocity profile must 

be provided.  

 Velocity profile models for annular flows 

The prediction of a physically sound velocity distribution for the liquid phase 

is an ongoing study in the literature. A relation for turbulent liquid shear stress for 

thin liquid films can be applied for the continuous layer of the liquid film in annular 

flows as 

𝜏 = 𝜇𝑡
𝜕𝑢𝐿
𝜕𝑦

 (4.6) 

where 𝜇𝑡 is the turbulent viscosity. For annular flows, a common assumption is that 

the liquid film can be treated as a turbulent boundary layer. Thus, the effective 

viscosity can be correlated with the liquid viscosity from the Prandtl relationship 

(Dobran, 1983). For the viscous sublayer (𝑦+ ≤ 𝑦𝑠𝑢𝑏
+ ) 

𝜇𝑡
𝜇𝐿
= 1  (4.7) 

and for the turbulent layer (𝑦𝑢𝑝
+ < 𝑦+ < ℎ𝐿

+) 
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𝜇𝑡
𝜇𝐿
= 𝐾 𝑦+ (4.8) 

where the transition, or buffer layer, is the region between the viscous sub-layer 

and turbulent layer (𝑦𝑠𝑢𝑏
+ < 𝑦+ < 𝑦𝑢𝑝

+ ). 

For thin liquid films, one can reasonably approximate the shear stress in Eq. 

(4.6) as 𝜏 = 𝜏𝑤. Integrating Eq. (4.6) using Eqs. (4.7) and (4.8) yields 

{
𝑢+ = 𝑦+                 , 𝑦+ ≤ 𝑦𝑠𝑢𝑏

+

𝑢+ =
1

𝐾
ln 𝑦+ + 𝐴 , 𝑦+ ≥ 𝑦𝑢𝑝

+
 (4.9) 

The constant 𝐾 is the von-Kármán constant (𝐾 = 0.4) and 𝐴 is an empirical 

constant, related to the boundary condition. A common approximation of single-

phase flow yields the so-called Universal Velocity Profile (UVP) (Dobran, 1983): 

{

𝑢+ = 𝑦+                          ,                0 < 𝑦+ ≤ 𝑦𝑠𝑢𝑏
+

𝑢+ = 5 ln 𝑦+ − 3          ,            𝑦𝑠𝑢𝑏
+ < 𝑦+ < 𝑦𝑢𝑝

+  

𝑢+ = 2.5 ln 𝑦+ + 5.5   ,                𝑦𝑢𝑝
+ ≤ 𝑦+ ≤ ℎ𝐿

+

 (4.10) 

Experimental works have shown that the standard UVP is unable to adequately 

predict the velocity profile for annular liquid films. Figure 4.2 displays the non-

dimensional velocity profile experimental data of Vassalo (1999) for annular flows. 

It shows that the UVP (continuous line) overpredicts the magnitude of the liquid 

film velocity profiles and only shows good agreement for the null gas superficial 

velocity, i.e., single phase liquid flow. 

 

Figure 4.2 –Experimental data of velocity profiles compared against the standard UVP 

(Vassalo, 1999). 
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A more recent study performed by Ashwood et al. (2015) has shown that the 

standard velocity profile underpredicts experimental data for annular flow in a 

square cross-section pipe (see continuous line in Figure 4.3). As can be noted, 

these separate experimental studies yield conflicting results regarding the 

accuracy of the UVP for liquid films. Modifications have been proposed to the 

standard UVP to better predict the velocity profile of wavy liquid films of annular 

flows. In the work of Ashwood et al. (2015), a correction for the constants of the 

standard UVP is provided to better fit the experimental results (see dashed line in 

Fig. Figure 4.3).  

 

Figure 4.3 –Comparison of the standard UVP and a modified UVP against the 

experimental data of Ashwood et al. (2015). 

The modified velocity profile is written below 

{

𝑢+ = 𝑦+                           ,               0 ≤ 𝑦+ ≤ 𝑦𝑠𝑢𝑏
+

𝑢+ = 7.2 ln 𝑦+ + 6.6      , 𝑦𝑠𝑢𝑏
+ < 𝑦+ < 𝑦𝑢𝑝

+  

𝑢+ = 7.38 ln 𝑦+ − 7.1   ,            𝑦𝑢𝑝
+ ≤ 𝑦+ ≤ ℎ𝐿

+

 (4.11) 

In these cases, the threshold for the viscous sublayer is 𝑦𝑠𝑢𝑏
+ = 5, and the 

buffer layer threshold is 𝑦𝑢𝑝
+ = 30, which are typical values for single-phase 

boundary layer flows. Based on the results of Ashwood et al. (2015), Cioncolini et 

al. (2015) proposed new limits for the molecular sublayer, buffer, and turbulent 

layers, that are arguably more appropriate to shear-driven annular liquid films. In 

their work, the revised bounds for each region are 𝑦𝑠𝑢𝑏
+ = 9  and 𝑦𝑢𝑝

+ = 40. 

However, it is yet to be thoroughly assessed with other experimental 

configurations. 

DBD
PUC-Rio - Certificação Digital Nº 1920932/CA



4 A Model for the Momentum Flux Parameter___________________________ 51 

 

The scarcity of experimental data on liquid film velocity profiles and the 

underperformance of available models presents a significant obstacle in the 

development of physically accurate formulations for the momentum flux parameter. 

In light of this discussion, two velocity profile models are proposed in the present 

work: 

(i) Model I 

The first velocity profile model is based on a simplified version of the standard 

UVP, with a viscous sublayer and a full turbulent layer. The logarithmic profile of 

the turbulent layer is adjusted in order to couple the velocity distribution in the liquid 

film with the gas core region through the interfacial shear stress. We argue that 

imposing a link between the velocity distributions of both phases is consistent with 

a two-fluid formulation. The proposed velocity profile is defined as 

 {
𝑢+ = 𝑦+                           ,              0 ≤ 𝑦+ ≤ 𝑦𝑠𝑢𝑏

+

𝑢+ = 𝑎 ln 𝑦+ + 𝑏           ,           𝑦𝑠𝑢𝑏
+ < 𝑦+ ≤ ℎ𝐿

+  (4.12) 

where 𝑦𝑠𝑢𝑏
+ = 11. Applying Eq. (4.6) to the interface yields 

𝜏𝑖 = 𝜇𝑡
𝜕𝑈𝐿
𝜕𝑦

    (4.13) 

Using the turbulent mixing length approximation for the logarithm portion of 

the velocity profile 

𝜇𝑡 = 𝜌𝐿  𝑢𝜏ℓ = 𝜌𝐿  𝑢𝜏 𝐴𝑦  (4.14) 

where ℓ represents the mixing length, 𝐴 = 0.14 is an empirical constant. The non-

dimensional form of the resulting equation is 

𝜏𝑖 = 𝜌𝐿  𝑢𝜏
2 𝐴𝑦+

𝜕𝑢+

𝜕𝑦+ 
 (4.15) 

Defining a nondimensional shear stress as 

𝜏𝑖
+ =

𝜏𝑖
𝜌𝐿𝑢𝜏

2
 (4.16) 

and integrating Eq. (4.15) yields the following velocity profile equation 

𝑢+ =
𝜏𝑖
+

𝐴
ln  𝑦++𝐶 

(4.17) 

Therefore, the first coefficient is given by 
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𝑎 =
𝜏𝑖
+

0.14
 

(4.18) 

The velocity at 𝑦𝑠𝑢𝑏
+  is known from the linear velocity profile 

𝑢+(𝑦𝑠𝑢𝑏
+ ) = 𝑦𝑠𝑢𝑏

+  (4.19) 

which yields 

𝑏 = 𝑦𝑠𝑢𝑏
+ −

𝜏𝑖
+

0.14
𝑙𝑛 𝑦𝑠𝑢𝑏

+  
(4.20) 

(ii) Model II 

The second velocity profile model proposed in this work is based on the 

modifications of the standard UVP proposed in Cioncolini et al. (2015). It is defined 

as 

{

𝑢+ = 𝑦+                  ,              0 < 𝑦+ ≤ 𝑦𝑠𝑢𝑏
+  

𝑢+ = 𝑎 ln𝑦+ + 𝑏  ,          𝑦𝑠𝑢𝑏
+ < 𝑦+ < 𝑦𝑢𝑝

+  

𝑢+ = 𝑐 ln 𝑦+ + 𝑑 ,              𝑦𝑢𝑝
+ ≤ 𝑦+ < ℎ𝐿

+ 

 

 (4.21) 

The first logarithmic profile 𝑢+ = 𝑎 ln𝑦+ + 𝑏 has the following restrictions 

𝑢+(𝑦𝑠𝑢𝑏
+ ) = 𝑦𝑠𝑢𝑏

+    ;        
𝜕𝑢+

𝜕𝑦+
|
𝑦𝑠𝑢𝑏
+

= 1 
 

(4.22) 

which yield the following coefficients 

𝑎 = 𝑦𝑠𝑢𝑏
+     ;       𝑏 = 𝑦𝑠𝑢𝑏

+ (1 − ln 𝑦𝑠𝑢𝑏
+ ) (4.23) 

The constant of the logarithmic profile from  𝑦𝑢𝑝
+ ≤ 𝑦+ < ℎ𝐿

+ are determined 

based on the interface film velocity 𝑢+(ℎ𝐿
+), and by guaranteeing continuity of 

velocity at 𝑦𝑢𝑝
+ , thus 

𝑐 =
𝑎 ln 𝑦𝑢𝑝

+ + 𝑏 − 𝑢+(ℎ𝐿
+)

ln 𝑦𝑢𝑝
+ − lnℎ𝐿

+    ;      𝑑 = 𝑢+(ℎ𝐿
+) − 𝑐 ln ℎ𝐿

+ (4.24) 

 MFP pre-integrated models 

With the new velocity profile models for annular flows, one can obtain the 

momentum flux parameter from Eq. (4.5)  as rewritten below 
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𝐶𝐿 =
𝐴𝐿
2 𝜋

𝑢𝜏
2

𝜈𝐿
2  
∫ (𝑢+)2
ℎ𝐿
+

0
(𝑅+ − 𝑦+)𝑑𝑦+

[∫ 𝑢+(𝑅+ − 𝑦+)𝑑𝑦+
ℎ𝐿
+

0
]
2  (4.25)  

For each model, the velocity profile can be decomposed into its linear and 

logarithmic components. 

(i) Model I 

Model I has two profile components, which are decomposed as shown below 

𝐶𝐿 =
𝐴𝐿
2𝜋

𝑢𝜏
2

𝜈𝑙
2

𝒜1 +ℬ1

[𝒜2 + ℬ2]2
 (4.26) 

where the coefficients  

𝒜1 = ∫ 𝑦+
2

𝑦𝑠𝑢𝑏
+

0

(𝑅+ − 𝑦+)𝑑𝑦+     ;    ℬ1 = ∫ (𝑎 ln 𝑦+ + 𝑏)2

ℎ𝐿
+

𝑦𝑠𝑢𝑏
+

(𝑅+ − 𝑦+)𝑑𝑦+ (4.27) 

𝒜2 = ∫ 𝑦+

𝑦𝑠𝑢𝑏
+

0

(𝑅+ − 𝑦+)𝑑𝑦+       ;      ℬ2 = ∫ (𝑎 ln 𝑦+ + 𝑏)

ℎ𝐿
+

𝑦𝑠𝑢𝑏
+

(𝑅+ − 𝑦+)𝑑𝑦+ (4.28) 

represent the decomposed integrals for each velocity profile. The results of these 

integrals are shown below  

𝒜1 = 𝑦𝑠𝑢𝑏
+ 3

(
𝑅+

3
−
1

4
𝑦𝑠𝑢𝑏
+ )       ;    𝒜2 = 𝑦𝑠𝑢𝑏

+ 2
(
𝑅+

2
−
1

3
𝑦𝑠𝑢𝑏
+ ) (4.29) 

ℬ1 = ℎ𝐿
+ {(𝑎 ln ℎ𝐿

+ + 𝑏) [(𝑎 ln ℎ𝐿
+ + 𝑏) (𝑅+ −

1

2
ℎ𝐿
+) − 2𝑎 (𝑅+ −

1

4
ℎ𝐿
+)]

+ 𝑎2 (2𝑅+ −
1

4
ℎ𝐿
+)}

− 𝑦𝑠𝑢𝑏
+ {(𝑎 ln 𝑦𝑠𝑢𝑏

+ + 𝑏) [(𝑎 ln 𝑦𝑠𝑢𝑏
+ + 𝑏) (𝑅+ −

1

2
𝑦𝑠𝑢𝑏
+ )

− 2𝑎 (𝑅+ −
1

4
𝑦𝑠𝑢𝑏
+ )] + 𝑎2 (2𝑅+ −

1

4
𝑦𝑠𝑢𝑏
+ )} 

(4.30) 

ℬ2 = ℎ𝐿
+ {(𝑎 ln ℎ𝐿

+ + 𝑏) (𝑅+ −
1

2
ℎ𝐿
+) − 𝑎(𝑅+ −

1

4
ℎ𝐿
+) }

− 𝑦𝑠𝑢𝑏
+ {(𝑎 ln 𝑦𝑠𝑢𝑏

+ + 𝑏) (𝑅+ −
1

2
𝑦𝑠𝑢𝑏
+ ) − 𝑎(𝑅+ −

1

4
𝑦𝑠𝑢𝑏
+ ) } 

(4.31) 
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(ii) Model II 

Model II has one linear and two logarithmic velocity profiles. A similar 

procedure to the first model is taken here, with additional components 𝒞1 and 𝒞2 

that represent the second logarithmic profile of Eq. (4.21).  

𝐶𝐿 =
𝐴𝐿
2𝜋

𝑢𝜏
2

𝜈𝑙
2

𝒜1+ ℬ1 + 𝒞1

[𝒜2 + ℬ2 + 𝒞2]2
 (4.32) 

𝒜1 = ∫ 𝑦+
2

𝑦𝑠𝑢𝑏
+

0

(𝑅+ − 𝑦+)𝑑𝑦+  ;    ℬ1 = ∫ (𝑎 ln 𝑦+ + 𝑏)2

ℎ𝐿
+

𝑦𝑠𝑢𝑏
+

(𝑅+ − 𝑦+)𝑑𝑦+ (4.33) 

𝒜2 = ∫ 𝑦+

𝑦𝑠𝑢𝑏
+

0

(𝑅+ − 𝑦+)𝑑𝑦+;      ℬ2 = ∫ (𝑎 ln 𝑦+ + 𝑏)

ℎ𝐿
+

𝑦𝑠𝑢𝑏
+

(𝑅+ − 𝑦+)𝑑𝑦+ (4.34) 

𝒞1 = ∫ (𝑐 𝑙𝑛 𝑦+ + 𝑑)2

ℎ𝐿
+

𝑦𝑢𝑝
+

(𝑅+ − 𝑦+)𝑑𝑦+ (4.35) 

𝒞2 = ∫ (𝑐 𝑙𝑛 𝑦+ + 𝑑)

ℎ𝐿
+

𝑦𝑢𝑝
+

(𝑅+ − 𝑦+)𝑑𝑦+ (4.36) 

The resulting integrals are defined as 

𝒜1 = 𝑦𝑠𝑢𝑏
+ 3

(
𝑅+

3
−
1

4
𝑦𝑠𝑢𝑏
+ )        ;        𝒜2 = 𝑦𝑠𝑢𝑏

+ 2
(
𝑅+

2
−
1

3
𝑦𝑠𝑢𝑏
+ ) (4.37) 

ℬ1 = 𝑦𝑢𝑝
+ {(𝑎 ln 𝑦𝑢𝑝

+ + 𝑏) [(𝑎 ln 𝑦𝑢𝑝
+ + 𝑏) (𝑅+ −

1

2
𝑦𝑢𝑝
+ ) − 2𝑎 (𝑅+ −

1

4
𝑦𝑢𝑝
+ )]

+ 𝑎2 (2𝑅+ −
1

4
𝑦𝑢𝑝
+ )}

− 𝑦𝑠𝑢𝑏
+ {(𝑎 ln 𝑦𝑠𝑢𝑏

+ + 𝑏) [(𝑎 ln 𝑦𝑠𝑢𝑏
+ + 𝑏) (𝑅+ −

1

2
𝑦𝑠𝑢𝑏
+ )

− 2𝑎 (𝑅+ −
1

4
𝑦𝑠𝑢𝑏
+ )] + 𝑎2 (2𝑅+ −

1

4
𝑦𝑠𝑢𝑏
+ )} 

(4.38) 
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𝒞1 = ℎ𝐿
+ {(𝑐 ln ℎ𝐿

+ + 𝑑) [(𝑐 ln ℎ𝐿
+ + 𝑑) (𝑅+ −

1

2
ℎ𝐿
+) − 2𝑐 (𝑅+ −

1

4
ℎ𝐿
+)]

+ 𝑐2 (2𝑅+ −
1

4
ℎ𝐿
+)}

− 𝑦𝑢𝑝
+ {(𝑐 ln 𝑦𝑢𝑝

+ + 𝑑) [(𝑐 ln 𝑦𝑢𝑝
+ + 𝑑) (𝑅+ −

1

2
𝑦𝑢𝑝
+ )

− 2𝑐 (𝑅+ −
1

4
𝑦𝑢𝑝
+ )] + 𝑐2 (2𝑅+ −

1

4
𝑦𝑢𝑝
+ )} 

(4.39) 

ℬ2 = 𝑦𝑢𝑝
+ {(𝑎 𝑙𝑛 𝑦𝑢𝑝

+ + 𝑏) (𝑅+ −
1

2
𝑦𝑢𝑝
+ ) − 𝑎(𝑅+ −

1

4
𝑦𝑢𝑝
+ ) }

− 𝑦𝑠𝑢𝑏
+ {(𝑎 𝑙𝑛 𝑦𝑠𝑢𝑏

+ + 𝑏) (𝑅+ −
1

2
𝑦𝑠𝑢𝑏
+ ) − 𝑎(𝑅+ −

1

4
𝑦𝑠𝑢𝑏
+ ) } 

(4.40) 

𝒞2 = ℎ𝐿
+ {(𝑐 𝑙𝑛 ℎ𝐿

+ + 𝑑) (𝑅+ −
1

2
ℎ𝐿
+) − 𝑐(𝑅+ −

1

4
ℎ𝐿
+) }

− 𝑦𝑢𝑝
+ {(𝑐 𝑙𝑛 𝑦𝑢𝑝

+ + 𝑑) (𝑅+ −
1

2
𝑦𝑢𝑝
+ ) − 𝑐(𝑅+ −

1

4
𝑦𝑢𝑝
+ ) } 

(4.41) 

The pre-integrated models defined above allow for the estimation of a liquid 

momentum flux parameter. The procedure to obtain the 𝐶𝐿 values from the local 

flow quantities is described below. 

i) Obtain the liquid and gas phase velocities. 

ii) Obtain or calculate the liquid film thickness ℎ𝐿, either from simulation results 

or from an equilibrium estimate (see Appendix A). 

iii) Calculate the wall and interfacial shear stresses (Eq. (3.19) and (3.21)) and 

the non-dimensional liquid film height ℎ𝐿
+. 

iv) Identify in which region of the velocity profile model the liquid film ℎ𝐿
+ is located. 

v) Integrate Eq. (4.25) and (4.26) in the range of 𝑦+ = [0  ℎ𝐿
+] to obtain the 𝐶𝐿 

value. 

Figure 4.4 shows a map of the variation of the liquid momentum flux 

parameter as a function of the superficial velocities for an annular flow 

configuration of diameter 𝐷 = 34.5mm. It illustrates the dependence of the 𝐶𝐿 on 

the phase velocities. In this test, the wall shear stress was obtained from the friction 

factor model of Kosky & Staub (1971), Eq. (3.20), and the interfacial shear stress 

was obtained from the friction factor model of Whalley & Hewitt (1978), Eq. (3.23). 

The liquid film thickness was approximated by the equilibrium film height, 

described in Appendix A. A clear dependency on the liquid superficial velocity 𝑈𝑠𝐿 

can be observed, with a very small dependency on the gas superficial velocity 𝑈𝑠𝐺. 
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As expected, the low liquid superficial velocities yield higher relative phase 

velocities, which promotes a thinner liquid film configuration. The resulting velocity 

profile for thin films are expected to be linear, which leads to higher 𝐶𝐿 values. As 

the liquid superficial velocity increases, the 𝐶𝐿 value naturally increases as well.  

The results of Figure 4.4 are obtained from the equilibrium state for a 

particular set of initial conditions. For a numerical simulation, however, the 

formation of waves will result in large local variations in the liquid phase velocity 

and void fraction, and the 𝐶𝐿 value will naturally oscillate between higher values in 

the unperturbed region in-between-waves, and lower values in the disturbance 

waves. 

In light of this discussion, Figure 4.5 shows the variation of the liquid 

momentum flux parameter with the liquid Reynolds numbers 𝑅𝑒𝐿 (Eq. (3.16)). This 

is carried out by fixing the gas superficial velocity, varying only the liquid superficial 

velocity to obtain the equilibrium configuration. The models show a similar 

behavior, where for very thin films (low Reynolds number), the 𝐶𝐿 value is 

approximately 1.334, which corresponds to a linear velocity profile, as expected. 

As 𝑅𝑒𝐿 increases, the 𝐶𝐿 curves undergo a steep decline, converging to very low 

values, corresponding to flatter velocity profiles. Model II presents a more 

significant decline in 𝐶𝐿 for low Reynolds numbers, however, both models converge 

similarly for higher 𝑅𝑒𝐿. 

To further illustrate the behavior of the momentum flux parameter models, 

the data from the Ashwood et al. (2015) velocity profiles (Figure 4.3) were 

integrated to obtain a rough estimate of the experimental momentum flux 

parameter values. Figure 4.6 presents the experimental integrated profiles and the 

estimations of the models devised in the present work. Although it is a rough 

estimation of the velocity profiles, and the experimental set-up is a square duct, a 

similar trend is obtained by both models  
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Figure 4.4 - 𝐶𝐿 maps for Model I (left) and Model II (right). 

 

Figure 4.5 –𝐶𝐿 variation with the liquid Reynolds number for both models. 

 

Figure 4.6  Comparison between the experimental 𝐶𝐿 estimate and the developed 

models. 
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 MFP simplified models 

Although the use of pre-integrated models for the momentum flux parameter 

is more physically sound in comparison to constant 𝐶ℓ values, it comes at an 

additional computational cost. That is especially the case due to the use of a UVP, 

where the velocity profile is subdivided in different regions. In a numerical 

simulation, in order to adequately integrate the profile, several conditional 

statements must be used, for every computational control volume, at each time 

step.  

A solution to this issue can be through the definition of a simplified model. 

We observe that the MFP models devised in this work show a dependence on the 

liquid phase velocity and phase fraction, as expected. Thus, by fitting a power 

series model in the curves presented in Figure 4.5, i.e., assuming a dependence 

on the liquid Reynolds number only, a simplified model can be obtained. The model 

is of the form 

{
𝐶𝐿 = 1.334          ,          𝑅𝑒𝐿 ≤ 𝑅𝑒𝑐
𝐶𝐿 = 𝑚𝑅𝑒𝐿

𝑛 + 𝑏  , 𝑅𝑒𝐿 > 𝑅𝑒𝑐
 (4.42) 

For Model I, the coefficients are  

𝑚 = 1.3703   ;   𝑛 = −0.12517 ;  𝑏 = 0.66361  ;  𝑅𝑒𝑐 = 303 (4.43) 

and for Model II, the coefficients are  

𝑚 = 2.0152   ;    𝑛 = −0.29273 ;  𝑏 = 0.97945 ;  𝑅𝑒𝑐 = 314 (4.44) 
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5 NUMERICAL METHODOLOGY 

The numerical solution of the equations system for the 1D Two Fluid model 

is performed with the finite volume method (FVM) (Patankar, 1980). In this 

methodology, the spatial domain is subdivided into control volumes. The transport 

equations are integrated in time and space at each volume, creating an algebraic 

system of equations for the set of discrete volumes.  

A staggered grid is employed to minimize the instabilities of an oscillating 

pressure field, according to recommendations of Patankar (1980). Scalar 

variables (pressure, phase fractions) are stored in the center of the scalar control 

volumes, i.e., the nodal points, and the velocities are stored in the center of the 

vector control volumes, i.e., the faces. Figure 5.1 illustrates the layout of the 

control volumes. The uppercase symbols represent the nodal points 𝑃 (principal), 

𝐸 (east), 𝑊 (west), etc. whereas the lowercase symbols (e.g., 𝑒, 𝑤) represent the 

volume faces.  

At the present work, a uniform mesh spacing was employed, with the 

control volume face stored half distance from the nodal points. The symbols Δ𝑥 

and 𝛿𝑥 represent the length of the scalar and vector control volumes, 

respectively. Since the mesh spacing is constant, Δ𝑥 = δ𝑥. 

 

Figure 5.1 - Mesh layout (Scalar and vector control volumes). 

The present work expands on an in-house code developed by the 

Computational Fluid Dynamics Group (DFC) from the Department of Mechanical 

Engineering of PUC-Rio, by introducing the variable momentum flux parameters 
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formulation. The discretization of the equations for phase fractions, velocities and 

pressure are performed following the works of Ortega & Nieckele (2005), 

Carneiro et al. (2011), Siqueira et al. (2019) and Fontalvo et al. (2020) and are 

laid out in this section.  

 Gas Volume Fraction 

The gas volume fraction field is obtained from the gas mass conservation 

equation. The discrete equation is obtained by time and space integrations in the 

scalar control volume (where 𝑑∀= 𝐴𝑑𝑥), as shown below, where the order of 

integration is changed depending on the term being integrated as 

∫  ∫
𝜕𝛼𝐺𝜌𝐺
𝜕𝑡

𝑑𝑡𝐴𝑑𝑥

𝑡+𝛥𝑡

𝑡

𝑒

𝑤

+ ∫  ∫
𝜕𝛼𝐺𝜌𝐺𝑈𝐺

𝜕𝑥
𝐴𝑑𝑥𝑑𝑡

𝑒

𝑤

𝑡+𝛥𝑡

𝑡

= 0 (5.1) 

The temporal discretization is performed with a first order forward Euler 

method, which yields 

(𝜌𝐺𝛼𝐺)𝑃 − (𝜌𝐺𝛼𝐺)𝑃
𝑜

𝛥𝑡
𝐴𝛥𝑥 + �̃�𝐺𝑒  𝛼𝐺𝑒 − �̃�𝐺𝑤  𝛼𝐺𝑤 = 0 (5.2) 

where the superscript 𝑜 denotes the previous time instant, and a subscript is 

omitted for the current time step, corresponding to 𝑡 + Δ𝑡. �̃� is a pseudo mass 

flux evaluated at the faces 𝑒 and 𝑤, defined below  

�̃�𝐺𝑒 = �̂�𝐺𝑒𝑈𝐺𝑒𝐴               ;          �̃�𝐺𝑤 = �̂�𝐺𝑤𝑈𝐺𝑤𝐴  (5.3) 

where in order to evaluate the gas density in the faces of the control volume, the 

Upwind scheme is employed 

�̂�𝐺𝑒 = ⟦𝑠𝑖𝑔𝑛(𝑈𝐺𝑒), 0⟧𝜌𝐺𝑃 − ⟦𝑠𝑖𝑔𝑛(𝑈𝐺𝑒), 0⟧𝜌𝐺𝐸  (5.4) 

�̂�𝐺𝑤 = ⟦𝑠𝑖𝑔𝑛(𝑈𝐺𝑤), 0⟧𝜌𝐺𝑊 − ⟦𝑠𝑖𝑔𝑛(𝑈𝐺𝑤), 0⟧𝜌𝐺𝑃 (5.5) 

Following the procedure undertaken in Fontalvo (2016), a TVD Total 

Variation Diminishing (Versteeg & Malalalsekera, 2007) is employed for the 

spatial interpolation of the variables in the control volume faces. The TVD 

consists of a second order scheme that minimizes the numerical diffusion issue 

of low order schemes. The TVD approximation of the volumetric fraction in the 
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faces of a control volume are 

𝐹𝐺𝑒 = �̃�𝐺𝑒  𝛼𝐺𝑒 = ⟦�̃�𝐺𝑒 , 0⟧𝛼𝐺𝑃 − ⟦−�̃�𝐺𝑒 , 0⟧𝛼𝐺𝐸 − | �̃�𝐺𝑒|
𝛹(𝑟𝛼𝐺𝑒)

2
(𝛼𝐺𝑃 − 𝛼𝐺𝐸) 

(5.6) 

�̃�𝐺𝑤  𝛼𝐺𝑤 = ⟦�̃�𝐺𝑤 , 0⟧𝛼𝐺𝑊 − ⟦−�̃�𝐺𝑤 , 0⟧𝛼𝐺𝐸 − | �̃�𝐺𝑤|
𝛹(𝑟𝛼𝐺𝑤)

2
(𝛼𝐺𝑊 − 𝛼𝐺𝑃) 

(5.7) 

where the ⟦ ⟧ operator represents the maximum between two quantities. Ψ is 

the flux limiter function of the TVD scheme, which is dependent on the relation 

between the Upwind and Downwind gradients 𝑟, defined below 

𝑟𝛼𝐺𝑒
= ⟦𝑠𝑖𝑔𝑛(𝑈𝐺𝑒), 0⟧

𝛼𝐺𝑃 − 𝛼𝐺𝑊
𝛼𝐺𝐸 − 𝛼𝐺𝑃

+ ⟦−𝑠𝑖𝑔𝑛(𝑈𝐺𝑒), 0⟧
𝛼𝐺𝐸𝐸 − 𝛼𝐺𝐸
𝛼𝐺𝐸 − 𝛼𝐺𝑃

 (5.8) 

𝑟𝛼𝐺𝑤
= ⟦𝑠𝑖𝑔𝑛(𝑈𝐺𝑤), 0⟧

𝛼𝐺𝑊 − 𝛼𝐺𝑊𝑊
𝛼𝐺𝑃 − 𝛼𝐺𝑊

+ ⟦−𝑠𝑖𝑔𝑛(𝑈𝐺𝑤), 0⟧
𝛼𝐺𝐸 − 𝛼𝐺𝑃
𝛼𝐺𝑃 − 𝛼𝐺𝑊

 (5.9) 

The flux limiter function selected in this work is the Van Leer function (Van 

Leer, 1974), as it has been adopted extensively in the literature, with positive 

results (Fontalvo et al., 2020; Castello Branco et al., 2021). The Van Leer flux 

limiter is defined as 

𝛹(𝑟) =
𝑟 + |𝑟|

1 + 𝑟
 (5.10) 

Note that by defining 𝛹(𝑟) = 0, the first order Upwind scheme is recovered. 

The resulting algebraic gas mass conservation equation can be written as 

𝑎𝑃𝛼𝐺𝑃 = 𝑎𝐸𝛼𝐺𝐸 + 𝑎𝑊𝛼𝐺𝑊 + 𝑏
𝛼𝐺 (5.11) 

where the coefficients 𝑎𝑃, 𝑎𝐸 and 𝑎𝑊 are  

𝑎𝐸 = ⟦−�̃�𝐺𝑒 , 0⟧   ;     𝑎𝑊 = ⟦�̃�𝐺𝑤 , 0⟧    ;     𝑎𝑃
𝑜 = 𝜌𝐺

𝑜
𝑃
𝐴
𝛥𝑥

𝛥𝑡
 

𝑎𝑃 = 𝜌𝐺𝑃𝐴
𝛥𝑥

𝛥𝑡
+ ⟦�̃�𝐺𝑒 , 0⟧ + ⟦−�̃�𝐺𝑤 , 0⟧ 

(5.12) 

and the source term 𝑏 is defined as 

𝑏𝛼𝐺 = 𝑎𝑃
𝑜𝛼𝐺𝑃

𝑜 + 𝑏𝑇𝑉𝐷
𝛼𝐺  (5.13) 

DBD
PUC-Rio - Certificação Digital Nº 1920932/CA



5. Numerical Methodology________________________________________ 62 

 

where the TVD source term is written below 

𝑏𝑇𝑉𝐷
𝛼𝐺 = −|�̃�𝐺𝑒|

𝛹(𝑟𝛼𝐺𝑒)

2
(𝛼𝐺𝑃 − 𝛼𝐺𝑒) − |�̃�𝐺𝑤|

𝛹(𝑟𝛼𝐺𝑤)

2
(𝛼𝐺𝑊 − 𝛼𝐺𝑃) 

(5.14) 

 Velocities 

The gas and liquid phase velocities are obtained from the momentum 

equations, (3.7) and (3.8). A similar procedure to obtain the gas volume fraction 

from the mass conservation equation is employed here. As previously noted, the 

control volume for the velocity discretization is face centered. The momentum 

equations for phase 𝑘 can be rewritten in a more convenient form as 

𝜕(𝛼ℓ𝜌ℓ𝑈ℓ)

𝜕𝑡
+
𝜕(𝐶ℓ𝛼ℓ𝜌ℓ𝑈ℓ

2)

𝜕𝑥
= −𝛼ℓ

𝜕𝑃

𝜕𝑥
+ 𝑆𝑐ℓ + 𝑆𝑝ℓ𝑈ℓ (5.15) 

where 𝑃 = 𝑃𝐺𝑖 is the interface gas pressure, 𝑆𝑐ℓ and 𝑆𝑝ℓ are source terms of 

phase ℓ. The integrated form of Eq. (5.15) is shown below  

�̃�ℓ𝑤�̃�ℓ𝑤𝑈ℓ𝑤 − �̃�ℓ
𝑜�̃�ℓ𝑤

𝑜 𝑈ℓ𝑤
𝑜

𝛥𝑡
𝐴𝑑𝑥 + [𝐶ℓ𝑃𝐹ℓ𝑃𝑈ℓ𝑃 − 𝐶ℓ𝑊𝐹ℓ𝑊𝑈ℓ𝑊]

= −�̃�ℓ𝑤(𝑃𝑃 − 𝑃𝑊)𝐴 + (𝑆𝑐ℓ + 𝑆𝑝ℓ𝑤𝑈ℓ)𝐴𝑑𝑥 

(5.16) 

In the discretized momentum equation, the transient and pressure term are 

based on the face properties evaluated by a simple interpolation from the nodal 

points, which for a uniform mesh is 

�̃�ℓ𝑤 =
1

2
 (𝜌ℓ𝑃 + 𝜌ℓ𝑊)      ;        �̃�ℓ𝑤 =

1

2
 (𝛼ℓ𝑃 + 𝛼ℓ𝑊) (5.17) 

and the mass fluxes of phase ℓ evaluated in the nodal points are obtained from 

an average value of the mass fluxes in the faces of the control volume, as  

𝐹ℓ𝑃 = 𝛼ℓ𝑃 𝜌ℓ𝑃𝑈ℓ𝑃  𝐴 =
𝐹ℓ𝑤 + 𝐹ℓ𝑒

2
    (5.18) 

𝐹ℓ𝑊 = 𝛼ℓ𝑊𝜌ℓ𝑊 𝑈ℓ𝑊𝐴 =
𝐹ℓ𝑤𝑤 + 𝐹ℓ𝑤

2
 

(5.19) 

The face values of the mass fluxes are 
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𝐹ℓ𝑒 = �̃�ℓ𝑒  �̂�ℓ𝑒   ;     𝐹ℓ𝑤 = �̃�ℓ𝑤  �̂�ℓ𝑤  ;     𝐹𝑘𝑤𝑤 = �̃�𝑤𝑤  �̂�ℓ𝑤𝑤 (5.20) 

where the face volume fraction is determined with the Upwind approximation 

�̂�ℓ𝑒 = ⟦𝑠𝑖𝑔𝑛(𝑈ℓ𝑒), 0⟧𝛼ℓ𝑃 − ⟦𝑠𝑖𝑔𝑛(𝑈ℓ𝑒), 0⟧𝛼ℓ𝐸 (5.21) 

�̂�ℓ𝑤 = ⟦𝑠𝑖𝑔𝑛(𝑈ℓ𝑤), 0⟧𝛼ℓ𝑊 − ⟦𝑠𝑖𝑔𝑛(𝑈ℓ𝑤), 0⟧𝛼𝐺ℓ𝑃 (5.22) 

The momentum flux term, can be determined in the nodal points with the 

TVD approximation as 

𝐹ℓ𝑃𝑈ℓ𝑃 = ⟦𝐹ℓ𝑃 , 0⟧ 𝑈ℓ𝑤 − ⟦−𝐹ℓ𝑃 , 0⟧ 𝑈ℓ𝑒 − |𝐹ℓ𝑃|
𝛹𝑃
2
(𝑈ℓ𝑤 − 𝑈ℓ𝑒) (5.23) 

𝐹ℓ𝑊𝑈ℓ𝑊 = ⟦𝐹ℓ𝑊, 0⟧𝑈ℓ𝑤𝑤 − ⟦−𝐹ℓ𝑊, 0⟧ 𝑈ℓ𝑤 − |𝐹ℓ𝑊|
𝛹𝑊
2
(𝑈ℓ𝑤𝑤 − 𝑈ℓ𝑤) (5.24) 

The point values of the momentum flux parameter 𝐶ℓ are obtained from the 

average of the neighboring faces as shown below 

𝐶ℓ𝑃 =
𝐶ℓ𝑒 + 𝐶ℓ𝑤

2
   ;      𝐶ℓ𝑊 =

𝐶ℓ𝑤𝑤 + 𝐶ℓ𝑤
2

 (5.25) 

The discretized momentum equation can then be rearranged in the form 

𝑎ℓ𝑤𝑈ℓ𝑤 = 𝑎ℓ𝑤𝑤𝑈ℓ𝑤𝑤 + 𝑎ℓ𝑒𝑈ℓ𝑒 + 𝑏
𝑈ℓ + (1 − 𝛾)

𝑎ℓ𝑤
𝛾
𝑈ℓ
∗
𝑤

− �̃�ℓ𝑤𝐴(𝑃𝑃 − 𝑃𝑊) 

(5.26) 

where 𝛾 is the under-relaxation factor, that controls the stability of the iterative 

process. It effectively carries the solution from a previous iteration Uℓ
∗
w
 into the 

current iteration. Its value was kept at 𝛾 = 0.7. The coefficients of Eq. (5.26) are 

shown below 

𝑎ℓ𝑒 = 𝐶ℓ𝑃⟦−𝐹ℓ𝑃 , 0⟧   ;  𝑎ℓ𝑤𝑤 = 𝐶ℓ𝑊⟦𝐹ℓ𝑊, 0⟧   ;    𝑎ℓ
𝑜
𝑤
= �̃�ℓ

𝑜
𝑤
�̃�ℓ𝑤
𝑜 𝐴𝛥𝑥

𝛥𝑡
  

𝑎ℓ𝑤 = 𝑎ℓ
𝑜
𝑤
+ 𝑎ℓ𝑒 + 𝑎ℓ𝑤𝑤 + (𝐶ℓ𝑃 − 1)𝐹ℓ𝑃 − (𝐶ℓ𝑊 − 1)𝐹ℓ𝑊 + 𝑆𝑝ℓ𝑤𝛥𝑥 (5.27) 

The source coefficients are defined as 
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𝑏𝑈ℓ = 𝑎ℓ
𝑜
𝑤
𝑈ℓ𝑤
𝑜 + 𝑆𝑐ℓ𝑤  𝐴 𝛥𝑥 + 𝑏𝑇𝑉𝐷

𝑈ℓ  (5.28) 

𝑏𝑇𝑉𝐷
𝑈ℓ = −𝐶ℓ𝑃|𝐹ℓ𝑃|

𝛹(𝑈ℓ𝑃)

2
(𝑈ℓ𝑤 − 𝑈ℓ𝑒)

− 𝐶ℓ𝑊|𝐹ℓ𝑊|
𝛹(𝑈ℓ𝑊)

2
(𝑈ℓ𝑤𝑤 − 𝑈ℓ𝑤) 

(5.29) 

where the source terms vary depending upon the phase. They are defined below 

for each phase as 

𝑆𝑃𝐺𝑤
= −𝑏𝑖   ;     𝑆𝑃𝐿𝑤

= − 𝑏𝑤𝐿  (5.30) 

𝑆𝐶𝐺𝑤
= 𝑏𝑔𝐺

+ 𝑏𝑖 𝑈𝑙𝑓𝑤 + 𝑏𝑑𝑦𝑛𝐺      

𝑆𝐶𝐿𝑤
= 𝑏𝑔𝐿

+ 𝑏𝑖 (𝑈𝐺𝑤 − 𝑈𝑙𝑓𝑤) + 𝑏𝑑𝑦𝑛𝐿 + 𝑏𝑗𝑢𝑚𝑝 
(5.31) 

The terms 𝑏𝑖 and 𝑏𝑤𝐿 are the wall and interfacial shear stress contributions, 

defined as 

𝑏𝑖 =
1

2
𝑓𝑖𝑤�̃�𝐺𝑤 |𝑈𝐺𝑤 − 𝑈𝑙𝑓𝑤|

𝑆𝑖𝑤    ;   𝑏𝑤𝐿 =
1

2
 𝑓𝐿𝑤 𝜌𝐿 |𝑈𝐿𝑤|𝑆𝐿𝑤 (5.32) 

where 𝑈𝑙𝑓 is the liquid film velocity, which depend on the correlation employed to 

determine the interface shear stress. 𝑆𝐿 and 𝑆𝑖 are the liquid wetted perimeter 

and the interfacial perimeter, respectively. 𝑓𝐿 and 𝑓𝑖 are the wall and interfacial 

friction factors.  

The interface pressure jump is 

𝑏𝑗𝑢𝑚𝑝 = �̃�𝐿𝑤 𝐴 𝜎  (𝜅𝑝 − 𝜅𝑊) (5.33) 

and the gravitational terms are defined as 

𝑏𝑔𝐺
= −�̃�𝐺�̃�𝐺  𝐴 𝑔    ;       𝑏𝑔𝐿

= −𝜌𝐿�̃�𝐿  𝐴 𝑔  (5.34) 

Lastly, the dynamic pressure source can be written as 

𝑏𝑑𝑦𝑛𝐺 = 𝑊𝑓𝐺  𝐴 [𝛼𝐺𝑃𝜌𝑟𝑒𝑓𝑃(𝑈𝐿𝑃 − 𝑈𝑖𝑃)
2

− 𝛼𝐺𝑊𝜌𝑟𝑒𝑓𝑊(𝑈𝐿𝑊 − 𝑈𝑖𝑊)
2
]  

(5.35) 
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𝑏𝑑𝑦𝑛𝐿
= 𝑊𝑓𝐿𝐴 [𝛼𝐿𝑃 𝜌𝑟𝑒𝑓𝑃(𝑈𝐿𝑃 −𝑈𝑖𝑃)

2

− 𝛼𝐿𝑊𝜌𝑟𝑒𝑓𝑊(𝑈𝐿𝑊 − 𝑈𝑖𝑊)
2
]  

(5.36) 

where 𝑊𝑓𝑘 and 𝑈𝑖 are dependent on the dynamic pressure model. The nodal 

points liquid and interface velocities are averaged from the face values, i.e., 𝑈ℓ𝑃 =

 (𝑈ℓ𝑤 + 𝑈ℓ𝑒) 2⁄  and 𝑈ℓ𝑊 = (𝑈ℓ𝑤𝑤 + 𝑈ℓ𝑤) 2⁄ . 

 Pressure 

From the summation of the gas and liquid continuity equations, an equation 

for pressure can be derived. To avoid the predominance of the liquid contribution 

over the gas in the combined equation (and the convergence issues that come 

associated with it) the equations are normalized by the reference phase densities 

(Issa & Kempf, 2003; Bonnizi, 2003). The resulting equation is shown below 

𝜕𝛼𝐿
𝜕𝑡

+
𝜕(𝛼𝐿𝑈𝐿)

𝜕𝑥
+

1

𝜌𝐺
𝑟𝑒𝑓

{
𝜕𝜌𝐺  𝛼𝐺
𝜕𝑡

+
𝜕(𝜌𝐺  𝛼𝐺𝑈𝐺)

𝜕𝑥
} = 0 (5.37) 

where 𝜌𝐺
𝑟𝑒𝑓

 is the reference gas density. The discrete form of Eq. (5.37) is 

obtained from a similar procedure employed for the gas volume fraction. The 

resulting equation is shown below 

(𝛼𝐿𝑃 − 𝛼𝐿𝑃
𝑜)𝐴

𝛥𝑥

𝛥𝑡
+ [�̂�𝐿𝑒𝑈𝐿𝑒𝐴 − �̂�𝐿𝑤𝑈𝐿𝑤𝐴]

+ 
1

𝜌𝑔
𝑟𝑒𝑓

[(𝛼𝐺𝑃𝜌𝐺𝑃 − 𝛼𝐺
𝑜
𝑃
𝜌𝐺
𝑜
𝑃
)𝐴
𝛥𝑥

𝛥𝑡

+ (�̂�𝐺𝑒�̂�𝐿𝑒𝑈𝐺𝑒𝐴 − �̂�𝐺𝑤�̂�𝐿𝑤𝑈𝐺𝑤𝐴)] = 0 

(5.38) 

Here �̂� and �̂� are determined with the Upwind approximation, Eqs. (5.4), (5.5), 

(5.21) and (5.22). 

The dependence on the pressure can be incorporated into Eq. (5.38) by 

introducing the face evaluated phase velocities from the momentum equation, 

written as 

𝑈ℓ𝑤 = �̂�ℓ𝑤 −
�̃�ℓ𝑤𝐴

𝑎ℓ𝑤 𝛾⁄
(𝑃𝑃 − 𝑃𝑊)  ;    𝑈ℓ𝑒 = �̂�ℓ𝑒 −

�̃�ℓ𝑒𝐴

𝑎ℓ𝑒 𝛾⁄
(𝑃𝐸 − 𝑃𝑃) (5.39) 
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�̂�ℓ are pseudo velocities, defined as 

�̂�ℓ𝑤 =
∑ 𝑎𝑛𝑏ℓ𝑤

𝑈ℓ𝑛𝑏𝑤𝑛𝑏 + 𝑏𝑈ℓ𝑤 + (1 − 𝛾) 𝑎ℓ𝑤 𝛾⁄ 𝑈ℓ
∗
𝑤

𝑎ℓ𝑤 𝛾⁄
 (5.40) 

�̂�ℓ𝑒 =
∑ 𝑎𝑛𝑏ℓ𝑒

𝑈ℓ𝑛𝑏𝑒𝑛𝑏 + 𝑏𝑈ℓ𝑒 + (1 − 𝛾) 𝑎ℓ𝑒 𝛾⁄ 𝑈ℓ
∗
𝑒

𝑎ℓ𝑒 𝛾⁄
 (5.41) 

where 𝑎𝑛𝑏ℓ𝑤
 are the neighboring coefficients of the phase-ℓ velocity at the 𝑤 face, 

while 𝑎𝑛𝑏ℓ𝑒
 corresponds to the neighboring coefficients of the equation 

discretized at the 𝑒 face. 

The node evaluated gas density has a dependency on the pressure through 

the ideal gas equation 

𝜌𝐺𝑃 =
𝑃𝑃
𝑅𝑇

= 𝜌𝐺
𝑟𝑒𝑓 𝑃𝑃

𝑃𝑟𝑒𝑓
  (5.42) 

From Eqs. (5.37) and (5.42), the resulting algebraic equation for pressure 

becomes 

𝑎𝑃𝑃𝑃 = 𝑎𝑊𝑃𝑊 + 𝑎𝐸𝑃𝐸 + 𝑏
𝑃    (5.43) 

with the following coefficients 

𝑎𝑊 = (
�̂�𝐺𝑤

𝜌𝐺
𝑟𝑒𝑓

�̂�𝐺𝑤
�̃�𝐺𝑤𝐴

𝑎𝐺𝑤 𝛾⁄
+ �̂�𝐿𝑤

�̃�𝐿𝑤𝐴

𝑎𝐿𝑤 𝛾⁄
)𝐴 

      𝑎𝐸 = (
�̂�𝐺𝑒

𝜌𝐺
𝑟𝑒𝑓

α̂𝐺𝑒
�̃�𝐺𝑒𝐴

𝑎𝐺𝑤 𝛾⁄
+ α̂𝐿𝑒

𝛼𝐿𝑒𝐴

𝑎𝐿𝑒 𝛾⁄
)𝐴 

𝑎𝑃 = 𝑎𝑊 + 𝑎𝐸 +
𝛼𝐺𝑃
𝑃𝑟𝑒𝑓  

𝐴
Δ𝑥

Δ𝑡
  

(5.44) 

and the source term is defined as 

𝑏𝑃 = [𝛼𝐿
𝑜
𝑃
− 𝛼𝐿𝑃 + (

𝜌𝐺
𝑜
𝑃

𝜌𝐺
𝑟𝑒𝑓

𝛼𝐺
𝑜
𝑃
)]𝐴

𝛥𝑥

𝛥𝑡

+ (
�̂�𝐺𝑤

𝜌𝐺
𝑟𝑒𝑓

�̂�𝐺𝑤�̂�𝐺𝑤 −
�̂�𝐺𝑒

𝜌𝐺
𝑟𝑒𝑓
 �̂�𝐺𝑒�̂�𝐺𝑒)𝐴

+ (�̂�𝐿𝑤�̂�𝐿𝑤 − �̂�𝐿𝑒�̂�𝐿𝑒)𝐴 

(5.45) 
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 Boundary conditions 

In the entrance boundary of the domain, there are three known quantities: 

the gas volume fraction and the gas and liquid superficial velocities. Thus, the 

liquid volume fraction and phase velocities are readily available. It is worth 

restating here that a uniform spatial mesh was defined according to the method 

A of Patankar (1980). Thus, the control volume face is placed half distance 

between nodes (Δ𝑥/2) and the boundary control volumes size are Δ𝑥/2.  

The convective fluxes in the faces of the boundary control volume also 

require special treatment. The 𝑟 parameters for the gas density and velocities in 

the TVD flux limiter function needs to be redefined for the boundary. Following 

the procedure recommended by Fontalvo (2016) and Versteeg & Malalasekera 

(2007), the corrected parameters are 

𝑟𝛼𝑤𝑤 =
𝛼𝐺𝑊𝑊

− 𝛼𝐺𝑜
𝛼𝐺𝑊 − 𝛼𝐺𝑊𝑊

⟦𝑠𝑖𝑔𝑛(𝑈𝐺𝑤𝑤), 0⟧

+
𝛼𝐺𝑃 − 𝛼𝐺𝑊
𝛼𝐺𝑊 − 𝛼𝐺𝑊𝑊

⟦−𝑠𝑖𝑔𝑛(𝑈𝐺𝑤𝑤), 0⟧ 

                 (5.46) 

𝑟𝑈ℓ𝑊
=
𝑈ℓ𝑤𝑤 − 𝑈ℓ𝑜
𝑈ℓ𝑤 − 𝑈ℓ𝑤𝑤

⟦𝑠𝑖𝑔𝑛(𝐹ℓ𝑊), 0⟧

+
𝑈ℓ𝑒 − 𝑈ℓ𝑤
𝑈ℓ𝑤 − 𝑈ℓ𝑤𝑤

⟦−𝑠𝑖𝑔𝑛(𝐹ℓ𝑊), 0⟧ 

 (5.47) 

The values 𝛼𝑜 and 𝑈𝑘𝑜 can be interpreted as extrapolated mirror values 

upstream from the boundary. They are defined as 

𝛼𝑜 = 2𝛼𝐴 − 𝛼𝑃  

  𝑈𝐺𝑜 = 2𝑈𝐺𝐴 − 𝑈𝐺𝑤𝑤   ;     𝑈𝐿𝑜 = 2𝑈𝐿𝐴 − 𝑈𝐿𝑤𝑤 

(5.48) 

where 𝛼𝐴, 𝑈𝐺𝐴 and 𝑈𝐿𝐴 are the prescribed boundary values. Lastly, at the exit, 

the pressure value is known. Thus, velocities and volume fractions must be 

calculated. A linear extrapolation from the first internal neighbors is undertaken 

as an approximation. 

𝑈𝑁+1 − 𝑈𝑁
𝛥𝑥 2⁄

=
𝑈𝑁 − 𝑈𝑁−1

𝛥𝑥
→  𝑈𝑁+1 =

3𝑈𝑁 − 𝑈𝑁−1
2

  (5.49) 
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𝛼𝑁 −𝑈𝑁−1
𝛥𝑥

=
𝛼𝑁−1 − 𝛼𝑁−2

𝛥𝑥
→   𝛼𝑁 = 2𝛼𝑁−1 − 𝛼𝑁−2  (5.50) 

 Mesh and Time step 

A mesh discretization spacing must be defined. As it has been previously 

discussed, a uniform mesh was defined in the present work, so the mesh spacing 

can be easily determined from the domain length 𝐿 and the total number of points 

𝑁 as 

𝛥𝑥 =
𝐿

𝑁 − 1
  (5.51) 

Also, for Regime Capturing simulations, refined meshes are required to 

adequately resolve the natural disturbances of the flow. Therefore, a fine mesh 

(Δ𝑥~0.1𝐷) is recommended, although a test of mesh independence must always 

be performed. 

An adequate timestep must also be selected. The Courant-Friedrichs-Levy 

condition correlates the timestep with the mesh spacing and the characteristic 

velocity of the flow, and it can be written in terms of a Courant number 

𝐶𝑜 =
𝑚𝑎𝑥|𝑈| 𝛥𝑡

𝛥𝑥
  (5.52) 

where 𝑚𝑎𝑥|𝑈| is the maximum flow velocity. The 𝐶𝑜 number limits the number of 

control volumes that can be crossed at a given timestep. Therefore, for a given 

mesh size, if the velocity of the flow increases, the timestep will decrease 

proportionally. For the simulations of this work, a Courant number of 𝐶𝑜 = 0.5 

was selected. 

 Numerical execution procedure 

The resulting numerical system derived in the previous subsections 

consist of a set of four discretized differential equations in a control volume. The 

values in the principal points (𝑃 in the scalar control volume and 𝑤 in the vector 

control volume) are only a function of its neighbors, which results in tri-diagonal 

solution matrices. These matrices can be solved using the TDMA algorithm 

(Patankar, 1980). Because these equations are non-linear and coupled, they 
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require an iterative solution procedure. A modified PRIME algorithm as proposed 

by Ortega (2004), based on the original PRIME algorithm (Maliska, 1981), is 

employed in this work. A description of the solution procedure is outlined below 

i) Set the initial conditions of the flow (i.e., velocity fields, volume fractions and 

pressure for 𝑡 = 0). 

ii) Use solution from previous time instant as an initial guess for the current 

timestep. 

iii) Solve Eq. (5.26) for the phase velocity fields using the estimated pressure 

field. 

iv) Solve Eq. (5.43) for the pressure field.  

v) Solve Eq. (5.39) to explicitly correct the velocity field based on the new 

pressure field. 

vi) Solve Eq. (5.11) for the gas volume fraction field.  

vii) Check residuals ( 𝑟𝑒𝑠𝑡𝑜𝑡 < 𝑡𝑜𝑙)  

(a)  If the condition is satisfied, go to step (viii). 

(b) If the condition is not satisfied, go to step (iii). 

viii) Check simulation time (𝑡 < 𝑡𝑓𝑖𝑛𝑎𝑙) 

(a) If the condition is satisfied, end simulation. 

(b) If the condition is not satisfied, update the timestep and go to 

step (ii). 

In the procedure described above, the convergence of the iterative 

process is checked through the residuals of the obtained solution from the TDMA 

algorithm. We define 

𝑟𝑒𝑠𝑚𝑎𝑥  = 𝑚𝑎𝑥(|𝑎𝑃𝜙𝑃 − 𝑎𝐸𝜙𝐸 − 𝑎𝑊𝜙𝑊 − 𝑏|)  (5.53) 

which represents the maximum residual in the entire domain for a generic flow 

quantity 𝜙. The tolerance stipulated for the simulations performed in this work is 

of 10−7. If they are not met within a maximum number of iterations (i.e., 20 

iterations), the solution has not converged. 
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6 THE STABILITY-HYPERBOLICITY PROBLEM OF THE 1D 
TWO-FLUID MODEL 

As discussed in previous sections, the standard Two-Fluid Model may be 

conditionally ill-posed in horizontal geometries, and unconditionally ill-posed in 

vertical geometries. 

The well-posedness of a system is achieved when the PDEs satisfy the 

Hadamard conditions (Hadamard, 1902): 

- A solution exists 

- The solution is unique 

- The solution continually depends on boundary and initial conditions 

If these conditions are not met, the problem is ill-posed. The first and second 

conditions generally do not generate great difficulties, i.e., the existence of a 

unique solution (Montini, 2011). The failure to meet the third criterium may manifest 

as an inability to attain a mesh convergent solution, as any small disturbance 

superposed with the initial condition may propagate along the physical domain and 

generate an entirely different solution.  

Through the optics of an analysis of characteristics, one must determine the 

characteristic roots of the system of conservation equations of mass and 

momentum to be able to define if it is well-posed or ill-posed. To determine the 

characteristic roots, it is convenient to write the conservation equations in a non-

conservative matrix form as 

𝑨(𝝋)
𝜕

𝜕𝑡
𝜑 + 𝑩(𝝋)

𝜕

𝜕𝑥
𝜑 + 𝑪(𝝋) = 0 (6.1) 

where 𝝋 is the vector of unknown independent variables, 𝑨 and 𝑩 are square 𝑛-

dimension coefficient matrices, 𝑛 being the number of independent variables, and 

𝑪 is the column vector containing the algebraic terms. The system defined in Eq. 

(6.1) is an initial value problem with constraints in space and time of 0 ≤ 𝑥 ≤ 𝐿 and 

𝑡 ≥ 0, respectively, where 𝐿 is the domain length.  

The initial condition for the system is of the form 𝝋(0, 𝑥) = 𝝋𝟎(𝑥). The 

characteristics of the system are then defined as the eigenvalues 𝜆𝑛 that satisfy 

the characteristic equation 
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𝑑𝑒𝑡(𝑩 − 𝜆𝑛𝑨) = 0  (6.2) 

Equation (6.2) has 𝑛 roots associated with the 𝜆𝑛 characteristics. The 

following criteria can be employed to assess the hyperbolicity of the system 

- If all 𝑛 roots are real and distinct, the system is hyperbolic 

- If there are equal roots, the system is parabolic 

- If there are complex roots, the system is elliptic 

If all the characteristics are real and distinct (hyperbolic system), the problem 

is well-posed and the information propagates in the real domain. The number of 

quantities to be prescribed for the initial value problem equals the number of 

characteristics obtained. Complex characteristics (elliptic system) imply the 

propagation of information from the complex plan to the real plan, and the problem 

of initial value is ill-posed. It would be possible to obtain a solution with the 

prescription of boundary conditions in all space and time (boundary value 

problem), which would imply the need (simply impossible) to provide information 

of future times (Prosperetti & Tryggvason, 2007). 

For the classical Two-Fluid model, without dynamic pressure and interface 

pressure jump, and with the momentum flux parameters equal to 1, (Issa & Kempf, 

2003; Carneiro, 2006 and Montini, 2011), the criterion to determine if the system 

is well- or ill-posed is given by 

(𝑈𝐺 − 𝑈𝐿)
2 ≤ (

𝛼𝐿
𝜌𝐿
+
𝛼𝐺
𝜌𝐺
) (𝜌𝐿 − 𝜌𝐺)

𝜕ℎ𝐿
𝜕𝛼𝐺

𝑔 𝑐𝑜𝑠 𝛽  (6.3) 

Therefore, for vertical geometries, the standard model is well posed only for the 

condition 𝑈𝐿 = 𝑈𝐺. 

Several authors have observed that the issue of ill-posedness is associated 

with the unbounded growth of small wavelength perturbations. Thus, the problem 

can be explored as an issue of stability. This is discussed in the next section. 

 Linear Stability Analysis 

A simple definition of stability is laid out in Drazin (2002). Qualitatively, the 

stability of a physical state is a measure of the effect that a small variation in that 

state at present time has in its conditions at a future time. If the variation in the 

future is infinitesimally small, the physical state is stable. However, if the variation 
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in the present state generates a finitely different state in a finite future time, then 

the state is unstable.  

In a numerical system, the onset of instabilities may occur from two sources: 

an unsteadiness generated by an initial condition that differs slightly from the 

equilibrium of a quantity in that system, or by the growth of machine round-off and 

truncation errors. Those mechanisms are inherent of any numerical procedure, and 

their magnitude will be dependent on the machine precision (e.g., single or double 

precision), timestep and mesh size. Although they are of an artificial nature, there 

is a direct analogy between these machine precision errors, that manifest as 

infinitesimally small disturbances, and physical short-wavelength variations that 

are always present in any flow (Carneiro, 2006).  

Through the optics of Linear Stability Theory (LST), one can define well-

posedness in terms of the behavior presented by perturbations in a given system. 

In a well-posed system, the growth of all resolvable wavelengths must be bounded. 

If the perturbation decays, the system is well-posed stable (Figure 6.1a); if it grows 

and the growth rate is bounded, the system is well-posed unstable (Figure 6.1d). 

The zero-stability condition occurs when the system neither damps nor amplifies 

the disturbance (Figure 6.1b). If the system is ill-posed, the growth rate of short 

wavelengths is unbounded, and the disturbance grows unphysically (Figure 6.1c). 

 

Figure 6.1- Propagation of a disturbance in horizontal flow (Montini, 2011). 

The problem of ill-posedness is, however, unrelated to the hydrodynamic 

stability of the physical flow, but an aspect of the mathematical and numerical 

models. 

The mesh plays an important role in the amplification of numerical 
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disturbances. The smallest wavelength that a numerical system can resolve is of 

2Δ𝑥, where Δ𝑥 is the mesh spacing. This threshold comes from the fact that at least 

two discrete points are required to resolve one period of oscillation of a wave. Thus, 

the mesh imposes a cut-off wavelength and essentially cannot see smaller 

disturbances. The use of increasingly more refined meshes allows for shorter 

wavelength disturbances to appear, significantly altering the numerical solution. 

The result is an inability to converge with mesh refinement, a clear characteristic 

of ill-posedness. On the other hand, a numerical discretization with coarse meshes 

tends to impose acute numerical diffusion into the system, and the formation of 

interfacial waves may be excessively damped or may not even occur. With this in 

mind, some authors have employed a more pragmatic solution to overcome the 

issue of ill-posedness in vertical flows, which is to employ intermediary meshes 

(𝐷 ≥ 𝛥𝑥 ≥ 0.1𝐷) with the Regime Capturing approach to predict the onset of slug 

flow (see Issa & Galleni, 2015). In reality, if the numerical model is consistent, its 

solution should approach that of the system of partial differential equations, for 

infinitely small meshes and time-steps. Thus, to overcome the issue, physical 

mechanisms must be reintroduced into the governing equations through closure 

models. The effect of closure relations on the hyperbolicity of the system can be 

tracked through linear stability theory.  

A linear stability analysis evaluates the stability of a system by imposing 

perturbations to all of its flow quantities and quantifying the growth rate of these 

disturbances. Two approaches are commonly employed in the literature: a 

differential stability analysis, that only addresses the stability of the mathematical 

system of equation, and a discrete stability analysis, that considers the contribution 

of numerical effects into the solution. Considering the differential approach, the 

Two-Fluid Model equation system can be either inviscid (the shear stress terms 

are zero) or viscous (the wall and interfacial shear stresses must be modeled for 

closure). 

 Differential Stability Analysis 

The destabilization of two-phase flows that results in the transition from 

different flow regimes is usually considered to be generated by the Kelvin-Helmholtz 

instability mechanism. The critical conditions that trigger ill-posedness are known to 

coincide with the Inviscid Kelvin-Helmholtz stability criteria (Liao et al., 2008). 

A stability analysis applied to the mathematical set of conservation equations 

allows for the identification of well/ill-posedness regions and generates a 
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dispersion relation, that correlates the growth rate of instabilities with their 

respective wavelengths, such that one has information on which waves grow, 

which waves decay, and at what rate. This further enriches the assessment of 

closure relation effects on the model, as the exact mathematical mechanism 

through which they act on wave formation becomes evident. 

For the derivation of the differential approach, an appropriate starting point 

would be the compact matrix system of the conservation equations. Although we 

have four unknows (pressure, gas volumetric fraction, gas and liquid velocities), 

and four equations, it is possible to combine the momentum equations to eliminate 

pressure in order to render a simpler system of equations, in this case, the 

unknown vector is defined as   

𝝋 = (𝛼𝐿 , 𝑈𝐺 , 𝑈𝐿  )
𝑇 ,   (6.4) 

Thus, the matrix set of conservation equations, must be formed by three equations: 

mass conservation of gas and liquid and combined momentum equation (gas 

momentum equation minus liquid momentum equation). Thus, it is convenient to 

define a combined dynamic pressure term of the form 

𝓅 = 𝛥𝑃𝑑𝑦𝑛𝐿 − 𝛥𝑃𝑑𝑦𝑛𝐺   (6.5) 

To write the equation in a non-conservative form, one needs to determine the 

spatial variation of the dynamic pressure and momentum flux parameter, which are 

𝜕𝓅

𝜕𝑥
=
𝜕𝓅

𝜕𝛼𝐿

𝜕𝛼𝐿
𝜕𝑥

+
𝜕𝓅

𝜕𝑈𝐿

𝜕𝑈𝐿
𝜕𝑥

+
𝜕𝓅

𝜕𝑈𝐺

𝜕𝑈𝐺
𝜕𝑥

  (6.6) 

𝜕𝐶ℓ
𝜕𝑥

=
𝜕𝐶ℓ
𝜕𝛼𝐿

𝜕𝛼𝐿
𝜕𝑥

+
𝜕𝐶ℓ
𝜕𝑈𝐿

𝜕𝑈𝐿
𝜕𝑥

+
𝜕𝐶ℓ
𝜕𝑈𝐺

𝜕𝑈𝐺
𝜕𝑥

  (6.7) 

The governing matrix system, rewritten here for clarity, is 

𝑨
𝜕

𝜕𝑡
𝜑 + 𝑩

𝜕

𝜕𝑥
𝜑 + 𝑪 = 0  (6.8) 

where the coefficient matrices 𝑨,𝑩 and 𝑪 are 

DBD
PUC-Rio - Certificação Digital Nº 1920932/CA



6. The Stability-Hyperbolicity problem of the 1D Two Fluid Model___________ 75 

 

𝑨 = (

−1 0 0
−1 0 0

𝜌𝐿𝑈𝐿
𝛼𝐿

+
𝜌𝐺𝑈𝐺
𝛼𝐺

−𝜌𝐺 𝜌𝐿

) (6.9) 

𝑩 =

(

 
 
 
 
 
 

−𝑈𝐺 𝛼𝐺  0

−𝑈𝐿 0 −𝛼𝐿

(𝐶𝐿
𝜌
𝐿

𝛼𝐿
  𝑈𝐿

2 + 𝐶𝐺
  𝜌

𝐺

𝛼𝐺
𝑈𝐺
2) +

+𝜌𝐿 𝑈𝐿
2
𝜕𝐶𝐿 

𝜕𝛼𝐿
− 𝜌𝐺 𝑈𝐺

2
𝜕𝐶𝐺  

𝜕𝛼𝐿
+

Δ𝑃𝐿

𝛼𝐿
+
Δ𝑃𝐺

𝛼𝐺
+
𝜕𝓅

𝜕𝛼𝐿
− 𝜎

𝜕𝜅2

𝜕𝛼𝐿

     

−2𝐶𝐺𝜌𝐺𝑈𝐺 +
𝜕𝓅

𝜕𝑈𝐺

+𝜌𝐿 𝑈𝐿
2
𝜕𝐶𝐿 

𝜕 𝑈𝐺
− 𝜌𝐺 𝑈𝐺

2
𝜕𝐶𝐺  

𝜕𝑈𝐺

 

2 𝐶𝐿𝜌𝐿𝑈𝐿 +
𝜕𝓅

𝜕𝑈𝐿

+𝜌𝐿 𝑈𝐿
2
𝜕𝐶𝐿 

𝜕𝑈𝐿
− 𝜌𝐺 𝑈𝐺

2
𝜕𝐶𝐺  

𝜕𝑈𝐿
)

 
 
 
 
 
 

 

 (6.10) 

𝑪 = (

0
0

ℱ −
𝜎𝜕𝜅1
𝜕𝑥

) (6.11) 

where ℱ denotes the force term, given by 

ℱ =  (𝜌𝐿 − 𝜌𝐺) 𝑔 +
𝜏𝐿𝑆𝐿
𝛼𝐿𝐴𝐿

−
𝜏𝑖𝑆𝑖
𝐴
(
1

𝛼𝐿
−
1

𝛼𝐺
) (6.12) 

The solution vector can be split into two components, a base value �̅�  and 

a perturbed contribution �̂�, (𝝋 = �̅� + �̂�) such that the system can be linearized 

with respect to �̂�. The differential formulation takes a disturbed quantity of the form  

�̂� = 𝜺 𝑒𝑖(𝜔𝑡−𝑘𝑥)   ;     𝜺 = (𝜀𝛼 , 𝜀𝑢𝐺 , 𝜀𝑢𝐿  )
𝑇
  (6.13) 

where 𝜺 is the amplitude, 𝜔 represents the angular frequency, 𝑘 represents the 

wavenumber and 𝑖 = √−1 is the unit imaginary number. The decomposed solution 

vector is then applied to the matrix system, Eq. (6.8), resulting in 

�̅�  
𝜕𝝋

𝜕 𝑡
+ �̅� 

𝜕 �̂�

𝜕 𝑡
+ �̂� 

𝜕𝝋

𝜕 𝑡
+ �̂� 

𝜕 �̂�

𝜕 𝑡
+ �̅� 

𝜕𝝋

𝜕 𝑥
+ �̅� 

𝜕�̂�

𝜕 𝑥
+ �̂� 

𝜕𝝋

𝜕 𝑥
+ �̂� 

𝜕�̂�

𝜕 𝑥

= �̅� + �̂�  

(6.14) 

Eliminating the mean flow and non-linearities from the system yields 

�̅� 
𝜕 �̂�

𝜕 𝑡
+ �̅� 

𝜕�̂�

𝜕 𝑥
= �̂�  (6.15) 

where the temporal and spatial derivatives are 
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𝜕 �̂�

𝜕 𝑡
= 𝑖 𝜔 𝑒𝑖(𝜔 𝑡 −𝑘𝑥) 𝜺        ;        

𝜕�̂�

𝜕 𝑥
= −𝑖 𝑘 𝑒𝑖(𝜔 𝑡 −𝑘𝑥) 𝜺 (6.16) 

The force contribution is rewritten as 

ℱ = ℱ̅ + ℱ̂ (6.17) 

where the perturbed contribution is 

ℱ̂ =
𝜕ℱ

𝜕𝛼𝐿
�̂�𝐿 +

𝜕ℱ

𝜕𝑈𝐺
�̂�𝐺 +

𝜕ℱ

𝜕𝑈𝐿
�̂�𝐿  (6.18) 

The linearized perturbation of the curvature term is 

�̂� =
𝜕�̂�1
𝜕𝑥

+
𝜕𝜅2
𝜕𝛼𝐿

�̂�𝐿     ;    
𝜕�̂�1
𝜕𝑥

≅
𝐷

4√𝛼𝐺  
(
𝜕3 �̂�𝐿 

𝜕 𝑥3
)   ;    

𝜕 𝜅2
𝜕 𝛼𝐿

=
1

𝐷 𝛼𝐺
3/2
     (6.19) 

With the definition of curvature and force terms, we rewrite the independent 

variable term 𝑪 as 

�̂� = �̂�  �̂� (6.20) 

where 

  �̂� = −(

0 0 0
0 0 0

  
𝜕 ℱ

𝜕 𝛼𝐿

𝜕 ℱ

𝜕 𝑈𝐺

𝜕 ℱ

𝜕 𝑈𝐿

) (6.21) 

such that the system is rewritten as 

  (�̅� 
𝜕 

𝜕 𝑡
+ �̅� 

𝜕

𝜕 𝑥
− �̂�) �̂� = 0 (6.22) 

Notice that for  �̂� = 0 the inviscid approach of the differential stability 

analysis is recovered. Lastly, we can define a coefficient matrix M such that  

  [�̅� 
𝝏 

𝝏 𝒕
+ �̅� 

𝝏

𝝏 𝒙
− �̂�] (𝑒𝑖(𝜔 𝑡 −𝑘𝑥) 𝜺)  = 0 →  𝑴  𝜺 = 0 (6.23) 

where 
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𝐌 = (6.24) 

(

 
 
 
 
 
 
 
 
 
 
 

𝜔 − 𝑘 𝑢𝐺 𝛼𝐺  𝑘 0
𝜔 − 𝑘 𝑢𝐿 0 −𝛼𝐿 𝑘

(

 
 
 
 
 
 
 
 
 

− 𝜔 (
𝜌𝐿𝑈𝐿
𝛼𝐿

+
𝜌𝐺𝑈𝐺
𝛼𝐺

)

𝑘 (𝐶𝐿
𝜌𝐿
𝛼𝐿
𝑈𝐿
2 + 𝐶𝐺

  𝜌𝐺
𝛼𝐺

𝑈𝐺
2)

+𝑘 (𝜌𝐿 𝑈𝐿
2
𝜕𝐶𝐿 

𝜕𝛼𝐿
− 𝜌𝐺 𝑈𝐺

2
𝜕𝐶𝐺 

𝜕𝛼𝐿
)

+𝑘 (
𝛥𝑃𝐿
𝛼𝐿

+
𝛥𝑃𝐺
𝛼𝐺

) + 𝑘
𝜕℘

𝜕𝛼𝐿

 

−𝑘
𝜎

𝐷 𝛼𝐺
3/2

+ 𝑘3
𝜎 𝐷

4√𝛼𝐺
+  𝑖

𝜕ℱ

𝜕𝛼𝐿)

 
 
 
 
 
 
 
 
 

(

  
 

𝜌𝐺  𝜔 − 2 𝐶𝐺𝜌𝐺𝑢𝐺  𝑘

+𝑘 (𝜌𝐿𝑈𝐿
2
𝜕𝐶𝐿 

𝜕𝑈𝐺
− 𝜌𝐺 𝑈𝐺

2
𝜕𝐶𝐺 

𝜕𝑈𝐺
)

+ 𝑘
𝜕℘

𝜕𝑢𝐺
+ 𝑖

𝜕ℱ

𝜕𝑢𝐺 )

  
 

(

  
 

−𝜌𝐿 𝜔 + 2 𝐶𝐿𝜌𝐿𝑢𝐿 𝑘

+𝑘 (𝜌𝐿𝑈𝐿
2
𝜕𝐶𝐿 

𝜕𝑈𝐿
− 𝜌𝐺 𝑈𝐺

2
𝜕𝐶𝐺 

𝜕𝑈𝐿
)

+ 𝑘
𝜕℘

𝜕𝑢𝐿
+ 𝑖

𝜕ℱ

𝜕𝑢𝐿 )

  
 

)

 
 
 
 
 
 
 
 
 
 
 

 

For a nontrivial solution to exist, the determinant of 𝐌 must be null. The 

dispersion relation 𝜔(𝑘)  is defined as a second order polynomial 

  𝛢 𝜔2 + 𝛣 𝜔 + 𝐶 = 0 →  𝜔 =
−𝛣 ± √𝛣2 − 4 𝛢 𝐶

2 𝛢
 (6.25) 

where the coefficients are defined as 

 𝛢 = (
𝜌𝐺  

𝛼𝐺
+
𝜌𝐿
𝛼𝐿
)  ;   𝛣 = −(𝑏1 𝑘 + 𝑏2 𝑖)   ;  𝐶 = 𝑐1 𝑘

2 − 𝑐2 𝑘 𝑖 (6.26) 

  𝑏1 = 2𝐶𝐺
𝜌𝐺
𝛼𝐺
 𝑈𝐺 + 2𝐶𝐿

𝜌𝐿
𝛼𝐿
 𝑈𝐿 − (

1

𝛼𝐺

𝜕 ℘

𝜕 𝑈𝐺
−
1

𝛼𝐿

𝜕 ℘

𝜕 𝑈
) 

                 +𝜌𝐺 𝑈𝐺
2 (
 1

𝛼𝐺

𝜕 𝐶𝐺  

𝜕 𝑈𝐺
−
1

𝛼𝐿

𝜕 𝐶𝐺  

𝜕 𝑈𝐿
) − 𝜌𝐿𝑈𝐿

2 (
1

𝛼𝐺

𝜕 𝐶𝐿 

𝜕 𝑈𝐺
−
1

𝛼𝐿

𝜕 𝐶𝐿  

𝜕 𝑈𝐿
) 

(6.27) 

  𝑐1 = (𝐶𝐿
𝜌𝐿
𝛼𝐿
𝑈𝐿
2 + 𝐶𝐺

𝜌𝐺
𝛼𝐺
𝑈𝐺
2) +

𝜎

𝐷 𝛼𝐿
3 2⁄

− 𝑘2
𝜎 𝐷

4 𝛼𝐿
1 2⁄
  

         − (
𝛥𝑃𝐿
𝛼𝐿

+
𝛥𝑃𝐺
𝛼𝐺

) − (
𝜕 ℘

𝜕 𝛼𝐿
+
𝑈𝐺
𝛼𝐺

𝜕 ℘

𝜕 𝑈𝐺
−
𝑈𝐿
𝛼𝐿

𝜕 ℘

𝜕 𝑈𝐿
) 

(6.28) 

 

+ρL UL
2 (
∂ CL 

∂ αL
+
UG
αG

∂ CL 

∂ UG
−
UL
αL

∂ CL 

∂ UL
) + ρG UG

2 (
∂ CG 

∂ αL
+
UG
αG

∂ CG 

∂ UG
−
UL
αL

∂ CG 

∂ UL
) 

  𝑏2 = −(
1

𝛼𝐺

𝜕 ℱ

𝜕𝑈𝐺
−
1

𝛼𝐿

𝜕 ℱ

𝜕𝑈𝐿
 )   ;    𝑐2 = (

𝜕 ℱ

𝜕𝛼𝐿
+ 
𝑈𝐺 
𝛼𝐺

𝜕 ℱ

𝜕𝑈𝐺
− 
𝑈𝐿 
𝛼𝐿

𝜕 ℱ

𝜕𝑈𝐿
) (6.29) 

The negative complex part of 𝜔 = 𝜔𝑅 ± 𝑖 𝜔𝑖 is the temporal growth rate of 

perturbations, and the real part is the frequency. Positive values of −𝜔𝑖 indicate that 

the perturbations are amplified, and therefore the system is unstable (see Figure 
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6.2). Additionally, if the amplification rate grows unboundedly for short wavelengths, 

the system is ill-posed. Negative −𝜔𝑖 indicate that the perturbations are damped, 

and therefore the system is stable.  

The zero-stability condition occurs when the growth-rate is exactly zero for 

all wavelengths. This constitutes the Inviscid Kelvin-Helmholtz (IKH) and Viscous 

Kelvin-Helmholtz (VKH) stability limits. Plotting the zero stability limits for different 

pairs of superficial velocities, one can obtain a stability map with well-defined regions 

of well/ill-posedness.  

                

Figure 6.2 - Dispersion relation for different stability conditions. 

 Discrete Stability Analysis 

As discussed, the discretization of the system of equations has an inherent 

effect on the solution. The spatial differencing scheme imposes an additional 

stabilizing effect known as numerical viscosity or numerical diffusion. For example, 

the First Order Upwind scheme is known to add significant artificial viscosity to the 

system.  

To analyze the stability of the discrete system of equations, a von Neumann 

analysis is performed (von Neumann & Richmeyer, 1949). The system of partial 

differential equations is discretized using the Finite Volume Method with a second 

order TVD van Leer spatial scheme in a staggered grid, i.e., the velocity is stored 

at the faces of the control volume, and the other fields are stored at the central 

node. Figure 5.1 illustrates the layout of the mesh. Similar to the differential form, 

the discrete formulation takes a perturbation defined as 

�̂�𝑃 = 𝜺 𝐸
𝑛𝑒𝑖𝑘𝑥 (6.30) 
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where 𝐸𝑛 is an amplitude factor at time 𝑡𝑛. We illustrate the procedure by 

considering the continuity equation of phase ℓ. The equation is discretized in 

relation to a principal node 𝑃, where the control volume size is Δ𝑥 and the timestep 

is Δ𝑡. The discretized equation for time 𝑡𝑛+1 is defined in Eq. (6.31) (the superscript 

𝑛 + 1 are dropped for clarity) 

𝛥𝑥

𝛥𝑡
 (𝛼ℓ𝑃 − 𝛼ℓ𝑃

𝑛) + (𝑈ℓ𝑒𝛼ℓ𝑒 − 𝑈ℓ𝑤  𝛼ℓ𝑤)  = 0 (6.31) 

The approximation of the east and west face values of the volume fractions 

are defined in a general form  

𝛼ℓ𝑒 = 𝛼ℓ𝑃 − 0.5  𝜓 (𝑟𝛼ℓ𝑒) (𝛼ℓ𝑃 − 𝛼ℓ𝐸)    ;     𝑟𝛼ℓ𝑒 = 
(𝛼ℓ𝑃 − 𝛼ℓ𝑊)

(𝛼ℓ𝐸 − 𝛼ℓ𝑃)
 (6.32) 

𝛼ℓ𝑤 = 𝛼ℓ𝑊 − 0.5  𝜓 (𝑟𝛼ℓ𝑤) (𝛼ℓ𝑊 − 𝛼ℓ𝑃)  ; 𝑟𝛼ℓ𝑤 =
(𝛼ℓ𝑊 − 𝛼ℓ𝑊𝑊)

(𝛼ℓ𝑃 − 𝛼ℓ𝑊)
 (6.33) 

where 𝜓(𝑟) is the flux limiter function, which depends on the spatial scheme. For 

the First Order Upwind scheme 𝜓(𝑟) = 1, for the TVD van Leer scheme  (Versteeg 

and Malalasekera, 2007) 

𝜓(𝑟) =
(𝑟 + |𝑟|)

(1 + 𝑟)
 (6.34) 

The perturbations in the adjacent control volumes are 

�̂�𝐸 = �̂�𝑃 𝑒
𝑖𝜙     ;     �̂�𝑊 = �̂�𝑃 𝑒

−𝑖𝜙 (6.35) 

where 𝜙 = 𝑘Δ𝑥 is the phase angle. Thus, the discrete linearized continuity equation 

for phase ℓ is 

𝜀𝛼ℓ  {
𝛥𝑥

𝛥𝑡
(1 − 𝐺−1) 

+𝑢ℓ  [(1 − 𝑒
−𝑖𝜙) +

1

2
𝜓(�̂�𝛼ℓ)[(𝑒

𝑖𝜙 − 1) + (𝑒−𝑖𝜙 − 1)]]}
𝜕 𝛼ℓ
𝜕𝛼𝐿

 

+ 𝜀𝑢ℓ  𝛼ℓ  𝑒
𝑖𝜙/2(1 − 𝑒−𝑖𝜙) = 0 

(6.36) 

where 

𝐺 =
𝐸𝑛+1

𝐸𝑛
 (6.37) 
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is defined as the amplification factor. For the momentum equation, the same 

procedure is applied. Here, we consider the face perturbed quantities as �̂�𝑒 =

�̂�𝑃 𝑒
𝑖𝜙 / 2, �̂�𝑤 = �̂�𝑒 𝑒

−𝑖𝜙  and �̂�𝑤𝑤 = �̂�𝑤 𝑒
−𝑖𝜙 . The discretized perturbed momentum 

flux parameter is defined as 

�̂�ℓ𝑃 =
𝜕𝐶ℓ
𝜕𝛼𝐿

�̂�𝐿𝑃 +
𝜕𝐶ℓ
𝜕𝑈𝐺

�̂�𝐺𝑃 +
𝜕𝐶ℓ
𝜕𝑈𝐿

�̂�𝐿𝑃 (6.38) 

The gas momentum equation is subtracted from the liquid, and the curvature 

terms are substituted by Eqs. (3.40) and (3.41). The discrete linearized formulation 

of the resulting equation is then written as 

𝜀𝛼𝐿 {( 
𝜌𝐿
𝛼𝐿
𝑈𝐿 +

𝜌𝐺
𝛼𝐺
 𝑈𝐺) (1 − 𝐺

−1)

+ Λ [(𝐶𝐿 𝜌𝐿𝑈𝐿
2 (
1

𝛼𝐿
+
1

𝐶𝐿

𝜕𝐶𝐿
𝜕𝛼𝐿

) + 𝐶𝐺  𝜌𝐺𝑈𝐺
2 (

1

𝛼𝐺
+
1

𝐶𝐺

𝜕𝐶𝐺
𝜕𝛼𝐿

))

− 𝜎 [
1

𝐷 𝛼𝐺
1.5 +

𝐷

4√𝛼𝐺
 𝑒𝑖𝜙 (

𝛥 𝜙

𝛥 𝑥
)
2

] + (
𝛥𝑃𝑑𝑦𝑛𝐿
𝛼𝐿

+
𝛥𝑃𝑑𝑦𝑛𝐺
𝛼𝐺

) +
𝜕℘

𝜕 𝛼𝐿
]

+
𝜕 ℱ

𝜕 𝛼𝐿
Δt} 

+𝜀𝑈𝐺 {−𝜌𝐺(1 − 𝐺
−1)

− 𝐶𝐺  𝜌𝐺  𝐶𝐹𝐿𝐺 (Δ Ψ + 𝑒
𝑖𝜙
2  𝛥 𝜙 (1 + 𝑈𝐺

1

𝐶𝐺
 
𝜕𝐶𝐺
𝜕𝑈𝐺

))

+  Λ 𝜌𝐿𝑈𝐿
2  
𝜕𝐶𝐿
𝜕𝑈𝐺

+
𝜕 ℘

𝜕 𝑈𝐺
Λ +

𝜕 ℱ

𝜕 𝑈𝐺
Δt} 

(6.39) 

+𝜀𝑈𝐿 { 𝜌𝐿  (1 − 𝐺
−1) + 𝐶𝐿  𝜌𝐿 𝐶𝐹𝐿𝐿 (Δ Ψ + 𝑒

𝑖𝜙
2  𝛥 𝜙 (1 + 𝑈𝐿

1

𝐶𝐿
 
𝜕𝐶𝐿
𝜕𝑈𝐿

)) − Λ  𝜌𝐺𝑈𝐺
2  
𝜕𝐶𝐺
𝜕𝑈𝐿

+
𝜕 ℘

𝜕 𝑈𝐿
Λ +

𝜕 ℱ

𝜕 𝑈𝐿
Δt} = 0 

where the auxiliary terms are 

𝐶𝐹𝐿ℓ =
𝑈ℓ 𝛥𝑡

𝛥𝑥
 (6.40) 

𝛥𝛹 = 𝛥 𝜙 (1 +
𝜓𝜑(�̂�)

2
𝛥 𝜙 𝑒𝑖𝜙) 

(6.41) 
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𝛥 𝜙 = (1 − 𝑒−𝑖𝜙) (6.42) 

𝛬 = 𝑒
𝑖𝜙
2  
𝛥𝑡

𝛥𝑥
 𝛥 𝜙 (6.43) 

A matrix 𝐌 is defined such that 𝐌 𝛆 = 0, where  
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𝑴 =

(

 
 
 
 
 
 
 
 
 
 
 
 

(𝐺−1 − 1) −  𝐶𝐹𝐿𝐺𝛥 𝛹 𝛼𝐺   𝛬 0

(𝐺−1 − 1) −  𝐶𝐹𝐿𝐿𝛥 𝛹 0 − 𝛼𝐿  𝛬

(

 
 
 
 
 
 
 
 
 
 

−(𝐺−1 − 1) (
 𝜌𝐿
𝛼𝐿
𝑈𝐿 + 

𝜌𝐺  

𝛼𝐺
𝑈𝐺) 

+𝛬

(

 
 
𝐶𝐿𝜌𝐿𝑈𝐿

2 (
1

𝛼𝐿
+
1

𝐶𝐿

𝜕𝐶𝐿
𝜕𝛼𝐿

)

+𝐶𝐺𝜌𝐺𝑈𝐺
2 (

1

𝛼𝐺
+
1

𝐶𝐺

𝜕𝐶𝐺
𝜕𝛼𝐿

)
)

 
 
+
 

𝛬 [ 
𝛥𝑃𝑑𝑦𝑛𝐿
𝛼𝐿

+
𝛥𝑃𝑑𝑦𝑛𝐺
𝛼𝐺

+
𝜕℘

𝜕𝛼𝐿
 ] +

𝜕ℱ

𝜕𝛼𝐿
𝛥𝑡  

−𝛬 𝜎 [
1

𝐷 𝛼𝐺
1.5 +

𝐷

4√𝛼𝐺
 𝑒𝑖𝜙 (

𝛥 𝜙

𝛥 𝑥
)
2

]
)

 
 
 
 
 
 
 
 
 
 

(

 
 
 
 

𝜌𝐺  (𝐺
−1 − 1)

− 𝜌𝐺𝐶𝐺𝐶𝐹𝐿𝐺 (

𝛥 𝛹 +

𝑒
𝑖𝜙
2  𝛥 𝜙 (1 + 𝑈𝐺

1

𝐶𝐺

𝜕𝐶𝐺
𝜕𝑈𝐺

)
)  

+Λ𝜌𝐿𝑈𝐿
2  
𝜕𝐶𝐿
𝜕𝑈𝐺

+ 𝛬
𝜕 ℘

𝜕𝑈𝐺
+
𝜕 ℱ

𝜕𝑈𝐺
𝛥𝑡

)

 
 
 
 

(

 
 
 
 

−𝜌𝐿  (𝐺
−1 − 1)

+𝜌𝐿𝐶𝐿𝐶𝐹𝐿𝐿 (

𝛥 𝛹 +

𝑒
𝑖𝜙
2  𝛥 𝜙 (1 + 𝑈𝐿

1

𝐶𝐿

𝜕𝐶𝐿
𝜕𝑈𝐿

)
)

−Λ𝜌𝐺𝑈𝐺
2  
𝜕𝐶𝐺
𝜕𝑈𝐿

+ 𝛬
𝜕 ℘

𝜕𝑈𝐿
+
𝜕 ℱ

𝜕𝑈𝐿
𝛥𝑡

)

 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 

 

 (6.44) 
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Lastly, the characteristic equation is solved for the amplification factor 𝐺 as 

defined below 

𝛢 𝐺2 + 𝛣 𝐺 + 𝐶 = 0 →  𝐺 =
−𝐵 ± √𝐵2 − 4 𝐴 𝐶

2 𝐴
 (6.45) 

The coefficients are  

Α = (
𝜌𝐺  

𝛼𝐺
+
𝜌𝐿
𝛼𝐿
)   ;     Β = −(𝑏1 + 𝑏2 ) ;    C = 𝑐1  + 𝑐2 (6.46) 

𝑏1 =
𝜌𝐺  

𝛼𝐺
[2 +  𝐶𝐹𝐿𝐺𝛥 𝛹 (𝐶𝐺 + 1) + (𝐶𝐺 − 1 + 𝑈𝐺 (

𝜕𝐶𝐺

𝜕𝑈𝐺
−
𝛼𝐺

𝛼𝐿
 
𝜕𝐶𝐺

𝜕𝑈𝐿
))𝐶𝐹𝐿𝐺 (𝑒

𝑖𝜙
2  𝛥 𝜙)] 

       +
𝜌𝐿
𝛼𝐿
 [2 + 𝐶𝐹𝐿𝐿 𝛥 𝛹 (𝐶𝐿 + 1) + (𝐶𝐿 − 1 + 𝑈𝐿 ( 

𝜕𝐶𝐿

𝜕𝑈𝐿
+
𝛼𝐿

𝛼𝐺

𝜕𝐶𝐿

𝜕𝑈𝐺
))𝐶𝐹𝐿𝐿  𝑒

𝑖𝜙
2   𝛥 𝜙] 

−𝛬 [(
1

𝛼𝐺

𝜕 ℘

𝜕𝑈𝐺
−
1

𝛼𝐿
 
𝜕 ℘

𝜕𝑈𝐿
)] (6.47) 

𝑐1 =
𝜌𝐺
𝛼𝐺
[(1 +  𝐶𝐹𝐿𝐺𝛥𝛹 ) [1 + 𝐶𝐺𝐶𝐹𝐿𝐺𝛥 𝛹]]          

+
𝜌𝐿
𝛼𝐿
[(1 +  𝐶𝐹𝐿𝐿𝛥𝛹 ) [1 + 𝐶𝐿𝐶𝐹𝐿𝐿𝛥 𝛹]] 

+
𝜌𝐺
𝛼𝐺
[𝐶𝐹𝐿𝐺 (𝑒

𝑖𝜙
2  𝛥 𝜙)(𝐶𝐺 (1 + 𝑈𝐺

1

𝐶𝐺
 
𝜕𝐶𝐺
𝜕𝑈𝐺

) − 1 − 𝑈𝐺
𝛼𝐺
𝛼𝐿
 
𝜕𝐶𝐺
𝜕𝑈𝐿

(1 + 𝐶𝐹𝐿𝐿ΔΨ))] 

+
𝜌𝐺
𝛼𝐺
[𝐶𝐹𝐿𝐿 (𝑒

𝑖𝜙
2  𝛥 𝜙)(𝐶𝐿 (1 + 𝑈𝐿

1

𝐶𝐿
 
𝜕𝐶𝐿
𝜕𝑈𝐿

) − 1 + 𝑈𝐿
𝛼𝐿
𝛼𝐺
 
𝜕𝐶𝐿
𝜕𝑈𝐺

(1 + 𝐶𝐹𝐿𝐺ΔΨ))] 

+
𝜌𝐺
𝛼𝐺
𝐶𝐺𝐶𝐹𝐿𝐺

2  𝑒
𝑖𝜙
2   𝛥𝜙 [𝛥𝛹 (1 + 𝑈𝐺

1

𝐶𝐺
 
𝜕𝐶𝐺
𝜕𝑈𝐺

) − 𝑒
𝑖𝜙
2   𝛥 𝜙 (1 +

𝛼𝐺
𝐶𝐺

𝜕𝐶𝐺
𝜕𝛼𝐿

)] 

+
𝜌𝐿
𝛼𝐿
𝐶𝐿𝐶𝐹𝐿𝐿

2  𝑒
𝑖𝜙
2   𝛥𝜙 [𝛥𝛹 (1 + 𝑈𝐿

1

𝐶𝐿
 
𝜕𝐶𝐿
𝜕𝑈𝐿

) − 𝑒
𝑖𝜙
2   𝛥 𝜙 (1 +

𝛼𝐿
𝐶𝐿

𝜕𝐶𝐿
𝜕𝛼𝐿

)] 

−𝛬(
 (1 +  𝐶𝐹𝐿𝐺𝛥 𝛹)

𝛼𝐺

𝜕 ℘

𝜕𝑈𝐺
−
(1 +  𝐶𝐹𝐿𝐿𝛥 𝛹)

𝛼𝐿
 
𝜕 ℘

𝜕𝑈𝐿
) 

−𝛬 
𝜕 ℱ

𝜕𝛼𝐿
𝛥𝑡 − 𝛥 𝑡 (

(1 +  𝐶𝐹𝐿𝐺𝛥 𝛹)

𝛼𝐺

𝜕 ℱ

𝜕𝑈𝐺
−
(1 +  𝐶𝐹𝐿𝐿𝛥 𝛹)

𝛼𝐿

𝜕 ℱ

𝜕𝑈𝐿
) 

 −𝛬2 ( 
𝛥𝑃𝑑𝑦𝑛𝐿
𝛼𝐿

+
𝛥𝑃𝑑𝑦𝑛𝐺
𝛼𝐺

+
𝜕 ℘

𝜕𝛼𝐿
− 𝜎 [

1

𝐷 𝛼𝐺
1.5 +

𝐷

4√𝛼𝐺
 𝑒𝑖𝜙 (

𝛥 𝜙

𝛥 𝑥
)
2

] )   (6.48) 
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𝑏2 =   𝛥𝑡 (
1

 𝛼𝐿

𝜕 ℱ

𝜕𝑢𝐿
−
1

𝛼𝐺

𝜕 ℱ

𝜕𝑢𝐺
) (6.49) 

𝑐2 = − Λ 
𝜕 ℱ

𝜕𝛼𝐿
Δ𝑡 − [

(1 +  𝐶𝐹𝐿𝐺   Δ Ψ)

𝛼𝐺
 
𝜕 ℱ

𝜕𝑢𝐺
−
(1 + 𝐶𝐹𝐿𝐿  Δ Ψ)

 𝛼𝐿

𝜕 ℱ

𝜕𝑢𝐿
] Δ𝑡      (6.50) 

Equation (6.45) yields an amplification factor for a particular wavelength. 

The amplification factor can be converted into a temporal growth rate through the 

following equation 

−𝜔𝑖 =
𝐺 − 1

𝛥𝑡
  (6.51) 

which allows a comparison between the differential stability analyses and the 

discrete von Neumann approach. Figure 6.3 shows a typical dispersion relation 

that can be obtained from a von Neumann analysis for different mesh refinements, 

represented by the colored continuous lines. As the mesh is refined, the von 

Neumann curves approach that of the differential analysis. 

 

Figure 6.3 - Dispersion relation of the discrete stability analysis. 

 Closure Models 

In order to evaluate the effects of the closure relations through the optics of 

linear stability theory, we define the perturbed quantities in terms of the selected 

closure modes. 
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6.4.1 Phase and interface pressure difference 

In annular flow, the difference between the bulk pressure and the interface 

pressure are modeled with a dynamic pressure term defined in Eq. (3.31). In the 

present work, three models are considered. To account for the dynamic pressure 

term effect on the linear stability calculations, the combined term defined in Eq. 

(6.5) is a convenient starting point 

𝓅 = 𝛥 𝑃𝑑𝑦𝑛𝐿 − 𝛥 𝑃𝑑𝑦𝑛𝐺 = (𝑊𝑓𝐿  − 𝑊𝑓𝐺) 𝜌𝑟𝑒𝑓 
(𝑈𝐿 − 𝑈𝑖 )

2 (6.52) 

Further, we define 

ℚ = − 𝜌𝑟𝑒𝑓 2 (𝑈𝐿 − 𝑈𝑖 )(𝑊𝑓𝐿  −𝑊𝑓𝐺) (6.53) 

The derivatives of 𝓅 are then defined in terms of ℚ  

𝜕 𝓅

𝜕𝛼𝐿
= ℚ 

𝜕𝑈𝑖 
𝜕𝛼𝐿

  ;      
𝜕 𝓅

𝜕𝑈𝐺
= ℚ 

𝜕𝑈𝑖 
𝜕𝑈𝐺

    ;      
𝜕 𝓅

𝜕𝑈𝐿
= ℚ(

𝜕𝑈𝑖 
𝜕𝑈𝐿

− 1) (6.54) 

The interface velocity depends on the dynamic pressure model.   

(i) Fowler & Lisseter (1992): 𝑈𝑖 = 2𝑈𝐿  

𝜕𝑈𝑖 
𝜕𝛼𝐿

= 0    ;       
𝜕𝑈𝑖 
𝜕𝑈𝐿

= 2   ;      
𝜕𝑈𝑖 
𝜕𝑈𝐺

= 0 (6.55) 

(ii) Bestion (1990): 𝑈𝑖 = 𝑈𝐺.  

𝜕𝑈𝑖 
𝜕𝛼𝐿

= 0    ;       
𝜕𝑈𝑖 
𝜕𝑈𝐿

= 0   ;      
𝜕𝑈𝑖 
𝜕𝑈𝐺

= 1 (6.56) 

(iii) Fontalvo et al. (2020): 𝑈𝑖 = 𝑈𝑊𝑎𝑣𝑒. The definition of 𝑈𝑊𝑎𝑣𝑒 from Eq. 

(3.28) can be simplified by defining  

𝑈𝑖 = 𝔄+𝔅  (6.57) 

where 

𝔄 = ℙ 𝜌𝐺
0.5 𝑈𝐺

0.62 𝛼𝐺
0.62 𝑈𝐿

0.16 𝛼𝐿
0.16  ;   𝔅 = ℙ 𝜌𝐿

0.5  
 𝑈𝐿
1.16𝛼𝐿

1.16 

𝑈𝐺
0.38𝛼𝐺

0.38 
  (6.58) 

and the auxiliary term ℙ is defined as 
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ℙ =
50 /𝑆𝑇𝑤

0.13

𝜌𝐺
0.5 + 𝜌𝐿

0.5  
  (
𝐷
𝑣𝐿
)
0.16

 (
𝐷
𝜈𝐺
)
0.38

 

    ;    𝑣ℓ =
𝜇ℓ
𝜌ℓ
  with ℓ = 𝐺 and 𝐿 (6.59) 

The derivatives are calculated as a function of 𝔄 and 𝔅 

𝜕𝑈𝑖
𝜕 𝑈𝐿

=
0.16 𝔄 + 1.16 𝔅

𝑈𝐿
   ;       

𝜕 𝑈𝑖
𝜕 𝑈𝐺

=
0.62 𝔄 − 0.38 𝔅 

𝑈𝐺
 (6.60) 

𝜕𝑈𝑖
𝜕 𝛼𝐿

= (
0.16 𝔄 + 1.16 𝔅

𝛼𝐿
−
0.62 𝔄 − 0.38 𝔅

𝛼𝐺
) (6.61) 

6.4.2 Shear Stresses 

The viscous approach of the linear stability analysis of this work incorporates 

the force term in the coefficient matrix 𝑪. The perturbed force term is dependent 

on its derivatives in relation to the flow quantities. They are defined below 

𝜕 ℱ

𝜕𝑈𝐿
=
𝜏𝐿  𝑆𝐿
𝛼𝐿  𝐴

(
2

 𝑈𝐿
+
1

𝑓𝐿

𝜕 𝑓𝐿
𝜕𝑈𝐿

)

+
𝜏𝑖 𝑆𝑖
𝐴

(
1

𝛼𝐿
+
1

𝛼𝐺
)(
𝜕𝑈𝑙𝑓

𝜕𝑈𝐿

2

 (𝑈𝐺 −𝑈𝑙𝑓)
−
1

𝑓
𝑖

𝜕 𝑓
𝑖

𝜕𝑈𝐿
)     

(6.62) 

𝜕 ℱ

𝜕𝑈𝐺
= −

𝜏𝑖  𝑆𝑖
𝐴

(
1

𝛼𝐿
+
1

𝛼𝐺
) [(1 −

𝜕𝑈𝑙𝑓

𝜕𝑈𝐺
)

2

 (𝑈𝐺 − 𝑈𝑙𝑓)
+
1

𝑓𝑖

𝜕 𝑓𝑖
𝜕𝑈𝐺

]  (6.63) 

𝜕 ℱ

𝜕𝛼𝐿  
=
𝜏𝐿  𝑆𝐿
𝛼𝐿  𝐴

(
1

𝑓𝐿

𝜕 𝑓𝐿
𝜕𝛼𝐿

−
1

𝛼𝐿
) 

−
𝜏𝑖 𝑆𝑖
𝐴

(
1

𝛼𝐿
+
1

𝛼𝐺
) [
1

𝑓𝑖

𝜕 𝑓𝑖
𝜕𝛼𝐿

+
1

𝑆𝑖

𝜕 𝑆𝑖
𝜕𝛼𝐿

+ (
1

𝛼𝐿
−
1

𝛼𝐺
) +

𝜕𝑈𝑙𝑓

𝜕𝛼𝐿

1

(𝑈𝐺 − 𝑈𝑙𝑓)
 ] (6.64) 

The derivative of the geometrical parameter for annular flow is 

 
1

𝑆𝑖
 
 𝜕𝑆𝑖
 𝜕𝛼𝐿

= −
 1

 2 𝛼𝐺
 (6.65) 

The liquid friction factor proposed by Kosky & Staub (1971) is defined in Eq. 

(3.20), and its derivatives are defined below 

DBD
PUC-Rio - Certificação Digital Nº 1920932/CA



6. The Stability-Hyperbolicity problem of the 1D Two Fluid Model___________ 87 

 

1

𝑓𝐿

𝜕𝑓𝐿
𝜕𝑈𝐺

= 0    ;     
1

𝑓𝐿

𝜕𝑓𝐿
𝜕𝑈𝐿

= −
24

𝑈𝐿
   ;       

1

𝑓𝐿

𝜕𝑓𝐿
𝜕𝛼𝐿

= −
24

𝛼𝐿
   (6.66) 

The interfacial friction factor derivatives are defined below for each model 

considered in this work. 

(i) Wallis (1969) 

1

𝑓𝑖

𝜕𝑓𝑖
𝜕𝑈𝐺

= 0    ;     
1

𝑓𝑖

𝜕𝑓𝑖
𝜕𝑈𝐿

= 0    ;    
1

𝑓𝑖

𝜕𝑓𝑖
𝜕𝛼𝐿

=
90

√𝛼𝐺(1 + 180(1 − √𝛼𝐺)
 (6.67) 

(ii) Whalley & Hewitt (1978) 

1

𝑓𝑖

𝜕𝑓𝑖
𝜕𝑈𝐺

= −
0.25

𝑈𝐺
   ;     

1

𝑓𝑖

𝜕𝑓𝑖
𝜕𝑈𝐿

= 0 (6.68) 

1

𝑓𝑖

𝜕𝑓𝑖
𝜕𝛼𝐿

=
0.25

𝛼𝐺
+

6 (
𝜌𝐿
𝜌𝐺
)

1
3

√𝛼𝐺(1 + 12(
𝜌𝐿
𝜌𝐺
)

1
3
(1 − (1 − √𝛼𝐺))

 (6.69) 

(iii)  Belt et al. (2009) 

1

𝑓𝑖

𝜕𝑓𝑖
𝜕𝑈𝐿

= −
1

𝑓𝑖

𝜕𝑓𝑖
𝜕𝑈𝐺

=
0.25

|𝑈𝐺 −𝑈𝐿|
  ;  
1

𝑓𝑖

𝜕𝑓𝑖
𝜕𝛼𝐿

=
0.25

𝛼𝐺
+
0.25

𝑆𝑖

𝜋𝐷

2√𝛼𝐺
 (6.70) 

Three models are examined for the liquid film velocity at the interface 𝑈𝑙𝑓: 

For the first model, 𝑈𝑙𝑓 = 𝑈𝐿, thus 𝜕𝑈𝑙𝑓 𝜕𝑈𝐿⁄ = 1; for the second 𝑈𝑙𝑓 = 2𝑈𝐿 and 

𝜕𝑈𝑙𝑓 𝜕𝑈𝐿⁄ = 2. For these two models thus 𝜕𝑈𝑙𝑓 𝜕𝑈𝐺⁄ = 0, thus 𝜕𝑈𝑙𝑓 𝜕𝛼𝐿⁄ = 0. For 

the third model 𝑈𝑙𝑓 = 𝑈𝑤𝑎𝑣𝑒, and the three derivatives are shown in Eqs. (6.60) and 

(6.61), for the case that 𝑈𝑖 = 𝑈𝑤𝑎𝑣𝑒. 

6.4.3 Momentum Flux Parameters 

The momentum flux parameter can be considered as a constant value, or as 

a function of the local flow quantities. In Chapter 4, two models were suggested for 

a variable 𝐶𝐿. Both models are of the form 
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𝐶𝐿 = 𝑚𝑅𝑒𝐿
𝑛 + 𝑏 (6.71) 

therefore 

𝜕𝐶𝐿
𝜕𝛼𝐿

= 0    ;   
𝜕𝐶𝐿
𝜕𝑈𝐿

=
𝑛

𝑈𝐿
𝑚𝑅𝑒𝐿

𝑛   ;    
𝜕𝐶𝐿
𝜕𝑈𝐺

= 0   (6.72) 

The coefficients are defined in section 4.3. Naturally, for a constant 𝐶𝐿, the 

derivatives are null. The gas parameter 𝐶𝐺 was kept constant. 

 Numerical Stability Analysis 

As mentioned in previous chapters, Linear Stability Theory (LST) can be 

used to analyze differential and discrete forms of mathematical formulations and 

provide valuable insights into their behavior in different conditions. Further, a direct 

comparison between results of a numerical simulation and the LST can also be 

obtained from the wave growth of the liquid film. The amplification rates can be 

extracted by applying a standard Fourier decomposition to the spatiotemporal data 

of the liquid height. This is performed using the Fast Fourier Transform (𝑓𝑓𝑡) of 

Matlab.  

Initially, the linear region, i.e., the spatial region where the amplification of 

disturbances is mostly linear, is defined. The criterion employed to determine the 

linear region is that only positions where the film fluctuations are below 0.001m are 

considered. This methodology ensures that nonlinear stability mechanisms are 

negligible, i.e., only linear stability mechanisms are being captured (see Figure 

6.4). For every streamwise location in the numerical mesh within the linear range, 

the available temporal data can be transformed into the Fourier domain for a 

frequency band from zero to the Nyquist frequency, defined as 1/(2Δ𝑡). The 

numerical simulations performed in this work acquire the flow field data at a 

sampling rate of 1kHz, or Δ𝑡 = 0.001s. 

From the Fourier decomposition of the temporal data, one can obtain the 

amplitudes associated with each frequency. By employing this procedure to every 

location, a spatial series of amplitudes for each frequency is obtained, as shown in 

Figure 6.5 The dashed red lines in the figures represent the limits of the linear 

region. By obtaining the derivative of the amplitude spatial evolution, the spatial 

growth rate 𝑘𝑖 can be calculated. Figure 6.5 illustrates the procedure to obtain the 

spatial growth rate from slope of the wave amplitude data for a particular frequency. 
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The temporal growth rates can be converted from spatial growth rates through the 

Gaster transform (Gaster, 1962), based on the wave group velocity 𝐶𝑤 

−𝜔𝑖 = 𝐶𝑤𝑘𝑖 (6.73) 

Here, 𝐶𝑤 is the group velocity, defined as 

𝐶𝑤 =
𝑑𝜔𝑟
𝑑𝑘𝑟

 (6.74) 

where 𝜔𝑟 is the frequency and 𝑘𝑟 is the wavenumber. Eq. (6.74) can be calculated 

numerically from the simulation data. 

 

Figure 6.4 – Spatiotemporal wave evolution data, where dashed lines represent the linear 
growth region. 

 

Figure 6.5 – Extraction of spatial growth rates from wave amplitude data. 
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7 RESULTS AND DISCUSSION 

In this chapter, the Two-Fluid model augmented with different combinations 

of closure models is evaluated with annular flow experimental set-ups and flow 

parameters of several works. Initially, the experimental cases are selected from 

the available databases. Then, a set of commonly used closure models selected 

from the literature (see Chapter 3) are assessed in terms of their ability to stabilize 

the system of equations, through the optics of a differential and discrete stability 

analyses. Numerical simulations results are then used for a systematic comparison 

against the LST. Lastly, the momentum flux parameter models described in 

Chapter 4 are numerically evaluated against experimental data in terms of 

accuracy, and results are also compared to the commonly employed constant 

liquid momentum flux parameter 𝐶𝐿 values. The tests are performed with statistical 

data for liquid film thickness, pressure drop and wave velocity as well as 

instantaneous timeseries of the liquid film, when available. 

 Case Selection 

Six experimental works of vertical upward air-water annular flows were 

selected from the literature and are outlined in Table 7.1. The selected 

configurations have a reasonable range of diameters, from 𝐷 = 19 mm to 50.8 mm. 

The cases also show a variability in lengths, where the configuration due to Zhao 

et al. (2013) has the shortest length (𝐿/𝐷 = 58) and the configuration due to Belt 

et al. (2010) presents the longest pipe (𝐿/𝐷 = 240) From these works, there is a 

significant number of available individual cases with varying gas and liquid 

superficial velocities. Figure 7.1 shows three flow pattern maps indicating the 

regions where the individual cases are located. The configurations with similar 

diameters were grouped together in the maps for the sake of simplicity.  

Since the current formulation does not predict the entrainment and deposition 

of droplets into and from the gas core, cases that are too far into the entrainment 

region must be discarded. Some necessary criteria must be used to limit cases 

that fall into certain regions. Two criteria were employed to determine the 

entrainment limits, following the work of Fontalvo (2016). 
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Table 7.1: Experimental configurations and physical properties of the fluids. 

Configuration 

Geometry Gas Liquid 

Diam. 

𝑫 (mm) 

Length 

𝑳 (m) 

Density 

(kg/m3) 

Viscosity 

(cP) 

Density 

(kg/m3) 

Viscosity 

(cP) 

I - Kaji (2008) 19.0 6.87 1.75 0.0179 998.2 1.00 

II - Zhao et al. (2013) 34.5 2.00 1.18 0.0179 998.2 1.00 

III - Fore & Dukler (1995) 50.8 3.50 1.27 0.01827 999.0 1.05 

IV - Fershtman et al. (2020) 24.0 10.00 1.18 0.0179 998.2 1.00 

V - Wolf et al. (2001) 31.8 10.80 1.95 0.0179 998.2 1.00 

VI - Belt et al. (2010) 50.0 12.00 1.18 0.0179 998.2 1.00 

 

Ishii & Grolmes (1975) proposed a critical liquid superficial Reynolds number 

of 𝑅𝑒𝑠𝐿𝑐𝑟𝑖𝑡 = 160 for the onset of entrainment, and a correlation for the gas 

superficial velocity, as shown below, for 𝑅𝑒𝑠𝐿 ≤ 1635 

𝜇𝐿𝑈𝑠𝐺
𝜎

√
𝜌𝐺
𝜌𝐿
≥ 11.78 𝑁𝜇

0.28𝑅𝑒𝑠𝐿
−
1
3   ;     𝑁𝜇 ≤

1

15
   (7.1) 

𝜇𝐿𝑈𝑠𝐺
𝜎

√
𝜌𝐺
𝜌𝐿
≥ 1.35𝑅𝑒𝑠𝐿

−
1
3    ;      𝑁𝜇 >

1

15
   (7.2) 

For 𝑅𝑒𝑠𝐿 > 1635, the following correlation applies 

𝜇𝐿𝑈𝑠𝐺
𝜎

√
𝜌𝐺
𝜌𝐿
≥ 𝑁𝜇

0.8   ;     𝑁𝜇 ≤
1

15
   (7.3) 

𝜇𝐿𝑈𝑠𝐺
𝜎

√
𝜌𝐺
𝜌𝐿
≥ 0.1146    ;      𝑁𝜇 >

1

15
   (7.4) 

where 𝑅𝑒𝑠𝐿 and 𝑁𝜇 can be calculated from Eqs. (3.15) and (3.29), respectively.  

A second set of criteria for the entrainment limit is devised in the works of Owen 

& Hewitt (1987). The critical liquid superficial Reynolds number is defined as 

𝑅𝑒𝑠𝐿𝑐𝑟𝑖𝑡 = 𝑒𝑥𝑝 (5.8405 + 0.4249
𝜇𝐺
𝜇𝐿
(
𝜌𝐺
𝜌𝐿
)
0.5

)  (7.5) 

and the gas superficial velocity restriction is given by 

𝑈𝑠𝐺 ≥ √
(61.240 − 0.0312𝑅𝑒𝑠𝐿)√𝜎𝑔𝜌𝐿

𝜌𝐺
  (7.6) 
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Both entrainment curves are also depicted Figure 7.1. It is clear that for lower 

superficial liquid velocities and intermediary superficial gas velocities, the two 

criteria somewhat differ in the representation of the entrainment limits.  

 

 

Figure 7.1 – Flow pattern maps of the investigated databases. Selected cases are 
highlighted in red. 

Several cases of the Wolf et al. (2001) and Kaji (2008) dataset are far within 

the entrainment region. Therefore, from these two works, only cases that are in the 

transition region between the two criteria are selected (two cases from Wolf et al. 

and four cases from Kaji, shown in red in Figure 7.1). From the Zhao et al. (2013) 

configuration, two cases are selected. The cases from the Fore & Dukler et al. 

(1995) and Belt et al. (2010) are quite similar both in diameter and in superficial 

velocities, and a larger number of cases are selected from these configurations, 

covering a larger range of gas superficial Reynolds numbers. Lastly, the 

Fershtman et al. (2020) case that fell outside both entrainment regions was 

selected. 

Table 7.2 lists the selected cases from each experimental work and their 

superficial Reynolds numbers, as well as the mean results for statistical quantities 

of liquid film thickness ℎ𝐿, pressure drop 𝑑𝑝/𝑑𝑥 and wave group velocity 𝑈𝑤. The 

methods by which these quantities are extracted from numerical results are 

described in Appendix B. 

A subgroup from the database shown in Table 7.2 is selected for a more 

thorough analysis (I-Kaji-1, II-Zhao-2, III-ForeDukler-3, and IV-Fershtman-1). 
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These cases will be used for the stability analyses results of the next section, as 

well as mesh convergence results in the numerical results section 7.3. The 

representative cases are highlighted in gray. 

Table 7.2: Experimental database. 

Configuration 
𝑹𝒆𝒔𝑳 

𝑼𝒔𝑮  

(m/s) 

𝑹𝒆𝒔𝑮 

× 𝟏𝟎−𝟒 

𝒉𝑳  

(mm) 

−𝒅𝒑/𝒅𝒙 

(Pa/m) 

𝑼𝒘  

(m/s) 

I-Kaji-1 569 22.30 4.14 0.2477 1712 2.25 

I-Kaji-2 569 24.36 4.52 0.2027 1875 2.48 

I-Kaji-3 569 31.42 5.84 0.1705 2451 2.87 

I-Kaji-4 569 33.92 6.30 0.1787 2475 2.87 

II-Zhao-1 603 29.42 6.69 0.1967 790 - 

II-Zhao-2 603 40.10 9.12 0.1500 1055 - 

III-Fore-Dukler-1 300 24.0 7.87 0.338 310 0.88 

III-Fore-Dukler-2 300 27.6 9.06 0.308 378 0.89 

III-Fore-Dukler-3 300 31.0 10.2 0.279 434 1.04 

III-Fore-Dukler-4 300 34.0 11.2 0.265 490 1.54 

III-Fore-Dukler-5 300 36.5 12.0 0.272 539 1.75 

III-Fore-Dukler-6 3000 23.7 7.78 0.572 889 1.81 

III-Fore-Dukler-7 3000 26.9 8.83 0.496 994 2.21 

III-Fore-Dukler-8 3000 30.0 9.84 0.443 1100 2.42 

III-Fore-Dukler-9 3000 32.5 10.7 0.405 1194 2.54 

III-Fore-Dukler-10 3000 34.6 11.4 0.405 1273 2.67 

IV-Fershtman-1 240 20 3.16 0.085 - 2.25 

V-Wolf-1 317 29.72 6.23 0.142 1166 2.24 

V-Wolf-2 635 31.43 6.59 0.1867 1479 2.54 

VI-Belt-1 500 26.2 8.64 0.2664 - 1.53 

VI-Belt-2 500 31 10.2 0.2206 - 1.85 

VI-Belt-3 500 42.1 13.9 0.1641 - 2.41 

VI-Belt-4 1000 26.2 8.64 0.3311 - 1.77 

VI-Belt-5 1000 31 10.2 0.2720 - 2.07 

VI-Belt-6 1000 42.1 13.9 0.1945 - 2.61 

VI-Belt-7 2000 26.2 8.64 0.4413 - 1.96 

VI-Belt-8 2000 31 10.2 0.3599 - 2.27 

VI-Belt-9 2000 42.1 13.9 0.2486 - 2.80 

 Stability Analysis Results 

The cases I-Kaji-1, II-Zhao-2, III-ForeDukler-3, and IV-Fershtman-1 were 

selected out of the group to be used in the stability analysis tests. As mentioned in 

previous sections, the viscous approach of the Kelvin-Helmholtz and the discrete 

von Neumann analyses are performed here to investigate the hydrodynamic 
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stability properties of commonly employed closure models.  

In the discrete analysis, the second order TVD van Leer scheme was 

employed for all tests, with mesh spacings varying from Δ𝑥/𝐷 = 1 to 0.015625, 

and the 𝐶𝐹𝐿𝐺 value, Eq.(6.40), is kept constant equal to 0.5.  

7.2.1 The effect of surface tension 

The pressure-jump term 𝑃𝐺𝑖 − 𝑃𝐿𝑖 = 𝜎𝜅 is known to have a stabilizing effect 

on the 1D Two-Fluid model. As mentioned, it counteracts wave growth by drawing 

the interface to a flat state. Since this effect is proportional to the curvatures, it is 

amplified when acting on short wavelength disturbances. As discussed in Chapter 

3, there are two curvature directions in annular flow. The curvature in the axial 

direction has stabilizing effects in the flow through the surface tension term, 

whereas the radial direction holds a destabilizing effect. Nevertheless, the axial 

direction has a predominant effect, which determines the overall behavior. 

Figure 7.2 shows the effect of the surface tension term against the standard 

1D Two-Fluid Model (without any additional stabilizing term, i.e., neither dynamic 

pressure models nor momentum flux parameters ≠ 1) for the different 

configurations. Here, the Whalley & Hewitt interfacial friction factor correlation 𝑓𝑖𝐼𝐼, 

Eq. (3.23), was employed, with 𝑈𝑙𝑓 = 𝑈𝐿. The curves shown in the figure correlate 

the temporal growth rate −𝜔𝑖 with frequency 𝜔𝑅. The colored curves represent the 

von Neumann stability analyses for different levels of mesh refinement, whereas 

the dashed curve represents the VKH analysis. The left column represents the 

case without the surface tension term (𝑃𝑖𝐺 = 𝑃𝑖𝐿). The results clearly show that the 

cases without surface tension present unbounded growth of short wavelength (high 

frequency) disturbances, characterizing an ill-posed state in a stability sense. The 

inclusion of the surface tension term (right column) introduces a cut-off wavelength 

in the differential analysis, above which all disturbances are completely damped, 

characterizing a well-posed unstable scenario. Thus, mesh convergence can be 

clearly attained, as shown by the von Neumann curves. However, these results 

also suggest that additional regularization mechanisms are necessary to ensure 

that mesh convergence is attained at practical grid sizes. 

Although a cut-off value is introduced in the differential curve, a small 

damping effect is observed in a von Neumann sense, i.e., the influence of surface 

tension is only ever significant for very refined meshes. For the IV-Fershtman-1 

case, the observed effect was more significant for coarser meshes.  
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Figure 7.2 – Influence of surface tension in the amplification rates of all configurations.  
Δ𝑃𝑑𝑦𝑛ℓ = 0; 𝐶ℓ = 1 ,   ℓ = 𝐺, 𝐿  ; 𝑈𝑙𝑓 = 𝑈𝐿. 
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7.2.2 Interfacial friction factor 

The three interfacial friction factor correlations, combined with the three film 

velocities 𝑈𝑙𝑓 are evaluated here through the optics of linear stability theory. For 

this test, the surface tension term was included, but no other regularization term 

(Δ𝑃𝑑𝑦𝑛ℓ = 0, 𝐶ℓ = 1, ℓ = 𝐺, 𝐿) was considered.  

Initially the film velocity is maintained equal to the liquid velocity, and the 

different friction factor correlations were varied. The dispersion curves in Figure 

7.3 show that, although there are some differences in the maximum growth rates 

achieved for each mesh refinement curves and for the differential analysis, the 

results are quite similar. The third friction factor model 𝑓𝑖𝐼𝐼𝐼 yields the most unstable 

configuration, and the second friction factor model 𝑓𝑖𝐼𝐼 promotes higher damping of 

the differential growth rate curves. Nearly no difference is observed for discrete 

curves of coarse and intermediary grids, Δ𝑥 𝐷⁄ = 1 to 0.125, which shows that this 

closure relation may not play as a significant role in guaranteeing well-posedness 

as others. From the Linear Stability Analyses, no information regarding the physical 

soundness of the models can be obtained, such that this evaluation is limited to 

whether the models influence wave growth, and in what way. 

Next, the effect of the liquid film velocity 𝑈𝑙𝑓 in the stability properties of the 

1D model is explored. Figure 7.4 shows a grid resolution test of the maximum 

growth rate −𝜔𝐼𝑚𝑎𝑥 and its associated dominant frequency 𝜈𝐷𝑂𝑀, extracted from 

dispersion relation curves of the von Neumann analysis for each friction factor 

model, combined with the three models for the liquid film 𝑈𝑙𝑓. The results show that 

no influence in wave growth is observed for any of the evaluated cases. Very small 

variations in the −𝜔𝐼𝑚𝑎𝑥 curve can be seen. Once again, the physical soundness 

of each model cannot be addressed through a stability analysis. For further 

sections, the standard 𝑈𝑙𝑓 = 𝑈𝐿 model was employed. 

Fontalvo et al. (2020) performed an extensive analysis of these interfacial 

friction factors and concluded that a combination of a small momentum flux 

parameter of 𝐶𝐿 = 1.05, the dynamic pressure model Δ𝑃𝑑𝑦𝑛𝐼𝐼𝐼 and the 𝑓𝑖𝐼𝐼 

correlation yielded a better agreement with experimental data for a large dataset. 

The evaluations of other closure models performed in the following sections will 

therefore employ the Whaley & Hewitt 𝑓𝑖𝐼𝐼 correlation. 
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Figure 7.3 – Influence of interfacial friction factors 𝑓𝑖 in the amplification rates of all 

configurations. 𝑃𝑖𝐺 ≠ 𝑃𝑖𝐿 ; Δ𝑃𝑑𝑦𝑛ℓ = 0; 𝐶ℓ = 1 ,   ℓ = 𝐺, 𝐿  ; 𝑈𝑙𝑓 = 𝑈𝐿. 
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Figure 7.4 - Influence of the liquid film velocity model 𝑈𝑙𝑓 in the maximum amplification 

rates and dominant frequencies of all configurations. 

𝑃𝑖𝐺 ≠ 𝑃𝑖𝐿 ; Δ𝑃𝑑𝑦𝑛ℓ = 0; 𝐶ℓ = 1 ,   ℓ = 𝐺, 𝐿 . 

7.2.3 Dynamic pressure term 

The stability effects of the inclusion of a dynamic pressure term are evaluated 

here for the different models selected from the literature. For the sake of brevity, 

we select one configuration to illustrate how each model works to stabilize the flow. 

Figure 7.5 shows the dispersion curves for the case with no regularization (Figure 

7.5a) and the selected Δ𝑃𝑑𝑦𝑛 models (Figure 7.5b-d). The chosen configuration for 

this test was the II-Zhao-2. Results for the remaining three configurations are 

shown in Appendix C. We observe from the figures that the dynamic pressure 

models Δ𝑃𝑑𝑦𝑛𝐼 and Δ𝑃𝑑𝑦𝑛𝐼𝐼𝐼 had little to no damping effect in the discrete curves 

and were unable to halt the unbounded wave growth as seen in the differential 

curves. The Δ𝑃𝑑𝑦𝑛𝐼𝐼, however, showed significant damping effects for finer meshes 

(Δ𝑥 𝐷⁄  = 0.03125 and 0.015625) and introduced a growth rate plateau at −𝜔𝑖 = 35 

1/𝑠 for very high frequencies, which would characterize the system as well-posed 

unstable. However, the grid refinement levels that would be required to achieve 
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mesh convergence with this regularization mechanism are virtually unattainable.  

Additionally, for practical mesh sizes, no observable change in the discrete 

growth rate curves occurred. The small influence of the dynamic pressure model 

is likely caused by the low value of the empirical constant 𝑊𝑓𝐿 in the formulation of 

models Δ𝑃𝑑𝑦𝑛𝐼
 and Δ𝑃𝑑𝑦𝑛𝐼𝐼𝐼

 (𝑊𝑓𝐿 = 0.02; 𝑊𝑓𝐺 = 0). Figure 7.6 shows effect of 

varying the 𝑊𝑓𝐿 constant in the aforementioned dynamic pressure models. 

Increasing its value yields a significant decrease in the maximum growth rates in 

the discrete analysis. In fact, a small increase to a value of 0.05 renders the system 

well-posed for Δ𝑃𝑑𝑦𝑛𝐼𝐼𝐼
, with a growth rate plateau of approximately −𝜔𝑖 = 22 1/𝑠. 

Increasing the constant to 0.5 virtually stabilizes all wavelengths, particularly in the 

Δ𝑃𝑑𝑦𝑛𝐼 model. In this scenario, the system is well-posed stable, and wave formation 

does not occur. Thus, careful consideration of the 𝑊𝑓𝐿 parameter must be 

performed in terms of its physical soundness.  

 

(a) No model Δ𝑃𝑑𝑦𝑛   (b) Model Δ𝑃𝑑𝑦𝑛𝐼 

 

  (c) Model Δ𝑃𝑑𝑦𝑛𝐼𝐼   (d) Model Δ𝑃𝑑𝑦𝑛𝐼𝐼𝐼 

Figure 7.5 – Influence of the dynamic pressure model. Case II-Zhao-2. 𝑓𝑖𝐼𝐼; 𝑈𝑙𝑓 = 𝑈𝐿; 

𝑃𝑖𝐺 = 𝑃𝑖𝐿; 𝐶ℓ = 1 ,   ℓ = 𝐺, 𝐿 . 
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Figure 7.6 - Influence of the 𝑊𝑓𝐿 constant in the growth rates. Case II-Zhao-2. 𝑓𝑖𝐼𝐼; 𝑈𝑙𝑓 =

𝑈𝐿; 𝑃𝑖𝐺 ≠ 𝑃𝑖𝐿; 𝐶ℓ = 1 ,   ℓ = 𝐺, 𝐿 . 
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7.2.4 Momentum flux parameter 

The liquid momentum flux parameter is analyzed here in terms of its ability 

to guarantee well posedness for the standard 1D Two-Fluid model for the selected 

cases. No additional closure models were employed for this test (𝑃𝑖𝐺 = 𝑃𝑖𝐿; 

Δ𝑃𝑑𝑦𝑛ℓ = 0 ,   ℓ = 𝐺, 𝐿). Figure 7.7 shows the flow pattern and stability maps for the 

entire database, with colored curves showing the Inviscid Kelvin Helmholtz limit 

(i.e., the limit between the well-posed unstable and ill-posed systems) for different 

𝐶𝐿 values. The area below the curves represents the ill-posed region for that 

particular 𝐶𝐿. For most of the selected cases, the use of a momentum flux 

parameter without additional regularization is only enough to ensure well-

posedness when the 𝐶𝐿 values are high. For the II-ForeDukler-6, a value higher 

than 1.33 is required to ensure well-posedness. This suggests that, in a stability 

sense, a constant value of 𝐶𝐿 may work well for a subset of cases but may also be 

exceedingly high or too low for others. This is part of the motivation behind the use 

of a varying 𝐶𝐿 model. 

 

 

Figure 7.7 – Stability maps showing the IKH limit of well/ill-posed for all configurations. 

𝑓𝑖𝐼𝐼; 𝑈𝑙𝑓 = 𝑈𝐿; 𝑃𝑖𝐺 = 𝑃𝑖𝐿; Δ𝑃𝑑𝑦𝑛ℓ = 0 ,   ℓ = 𝐺, 𝐿. 

Figure 7.9 presents the dispersion curves with varying 𝐶𝐿 levels for the I-Kaji-

1 configuration. As can be seen, an increase in 𝐶𝐿 promotes damping of the 

discrete curves. The shape factor values of 1.05 and 1.10 yield an ill-posed system, 
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as evidenced by the unbounded growth of differential curves. The stability map of 

Figure 7.7 shows that 𝐶𝐿 values above 1.15 render the system well-posed for all I-

Kaji cases, which is in line with what is observed for the 𝐶𝐿 = 1.20 and 1.33 

dispersion curves, where a growth rate plateau is observed. Results for the other 

three configurations are shown in Appendix C. 

 

 

 
Figure 7.8- Influence of the momentum flux parameter in the growth rates. Case I-Kaji-1. 

𝑓𝑖𝐼𝐼; 𝑈𝑙𝑓 = 𝑈𝐿; 𝑃𝑖𝐺 = 𝑃𝑖𝐿; Δ𝑃𝑑𝑦𝑛ℓ = 0 ,   ℓ = 𝐺, 𝐿. 

The 𝐶𝐿 models developed in Chapter 4 are also shown in Figure 7.9. Since 

there is no wave formation in a stability analysis, the dispersion curves are mostly 

influenced by the constant 𝐶𝐿 values obtained from the variable 𝐶𝐿models. They 

are calculated from the equilibrium liquid film thickness and superficial velocities. 

The derivatives of the momentum flux parameters with the flow quantities, 

Eq.(6.72), also play a role in the dispersion relation curves. The shape factors for 

the I-Kaji-1 configurations were of 1.2975 and 1.275 for Model I and Model II, 

respectively. The models show good stability properties for the equilibrium case 

and can render the 1D Two-Fluid Model well-posed without other regularization 
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mechanisms. However, the use of additional physically sound closure models 

(e.g., surface tension) are desirable from a physical fidelity standpoint. In a stability 

sense, the use of surface tension in addition to the liquid shape factor will not 

excessively limit wave growth since it does not dissipate energy, and therefore 

does not damp instabilities.  

Figure 7.9 presents the maximum growth rate −𝜔𝑖𝑚𝑎𝑥 and the associated 

dominant frequency 𝜈𝐷𝑂𝑀 from the differential curve as a function of the liquid 

momentum flux parameter. The differential results can be considered as a critical 

case for when numerical meshes are very refined. The 𝐶𝐿 value varies from 1.00 

to 1.33 and the effect of surface tension was considered in this test. The results 

show that the effect of the MFP is small in the dominant frequencies of each 

configuration, particularly for the III-ForeDukler-3 and IV-Fershtman-1 cases, 

where growth rate curves are small. The maximum growth rate, however, 

undergoes radical change when the 𝐶𝐿 values are increased, where for a value of 

1.33 the values in the I-Kaji-1 and II-Zhao-2 drop from approximately 30 1/𝑠 to 

below 5 1/𝑠.  

 

Figure 7.9 - Influence of the momentum flux parameter in stability properties. All cases. 

𝑓𝑖𝐼𝐼; 𝑈𝑙𝑓 = 𝑈𝐿; 𝑃𝑖𝐺 ≠ 𝑃𝑖𝐿; Δ𝑃𝑑𝑦𝑛ℓ = 0 ,   ℓ = 𝐺, 𝐿. 

A dynamic pressure model, however, has the same stability mechanisms as 

the momentum flux parameter, i.e., the relative velocity between the phases. 

Therefore, the combination of both parameters may cause some unphysical wave 

damping. For future tests with the momentum flux parameter, the interfacial 

pressure jump term will be considered. 

7.2.5 Comparison with simulations 

Considering the closure relation analysis of the current section, numerical 

simulations were performed with same configurations that have been evaluated 

with LST. The simulations were carried out with several constant 𝐶𝐿 values within 

the optimal range (1.05 to 1.33) and the two proposed models. The interfacial 
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friction factor correlation and liquid film velocity were 𝑓𝑖𝐼𝐼 and 𝑈𝑙𝑓 = 𝑈𝐿, respectively 

and surface tension was considered (𝑃𝑖𝐺 ≠ 𝑃𝑖𝐿). No dynamic pressure models 

were employed in this numerical study. Spatial growth rates were extracted from 

the simulation results through the methodology described in Section 6.5, at a 

frequency range around the maximum growth rate. Figure 7.10 presents the 

numerical growth rates for the II-Zhao-2 configuration (represented by the colored 

square symbols) against the discrete and differential growth rates (colored and 

dashed curves, respectively).  

 

Figure 7.10- Comparison between linear stability analysis and numerical stability 

properties obtained from simulations. Case II-Zhao-2. 𝑓𝑖𝐼𝐼; 𝑈𝑙𝑓 = 𝑈𝐿; 𝑃𝑖𝐺 ≠ 𝑃𝑖𝐿; 

Δ𝑃𝑑𝑦𝑛ℓ = 0 ,   ℓ = 𝐺, 𝐿. 
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Examining Figure 7.10, it can be seen that although the range of mesh 

refinements was Δ𝑥 𝐷⁄ = 1 to 0.0625, the spatial growth rates for coarser meshes 

could not be extracted from the data, as the growth rate spectrum was noisy. The 

results for the finer meshes showed good agreement against the linear stability 

analyses, with slight overpredictions for the finer mesh in the variable 𝐶𝐿 models. 

The damping effect of the momentum flux parameter is equivalent in both 

methodologies. These results suggest that the LST can accurately reproduce the 

behavior of the numerical model at the linear stage, where the onset of wave 

formation occurs. Further, linear stability analyses were shown to be an important 

tool to determine the effect of closure relations in the system and aid in the 

numerical modelling of multiphase flows in pipes.  

 Impact of the Momentum Flux Parameter in Simulation Results 

The previous sections have shown, through LST, that the novel 𝐶𝐿 models 

can regularize the 1D Two-Fluid model on their own and show good stability 

properties. A comparison against numerical growth rates has shown that the linear 

stability analyses can accurately predict the numerical behavior in the linear region. 

The current section aims to further evaluate the 𝐶𝐿 models through rigorous mesh 

convergence tests and comparisons against experimental data for statistical 

quantities. The grid resolution tests were carried out with the configuration 

subgroup of I-Kaji-1, II-Zhao-2, III-ForeDukler-3, and IV-Fershtman-1. 

In all tests discussed in this section regarding the momentum flux parameter, 

the friction factor 𝑓𝑖𝐼𝐼 correlation of Whalley & Hewitt (1978) was employed, and the 

liquid film velocity was set equal to the liquid velocity (𝑈𝑙𝑓 = 𝑈𝐿). Further, surface 

tension was also included (𝑃𝑖𝐺 ≠ 𝑃𝑖𝐿), but no dynamic pressure term Δ𝑃𝑑𝑦𝑛ℓ =

0 ,   ℓ = 𝐺, 𝐿. 

7.3.1 Numerical parameters 

Before presenting the simulation results, the numerical parameters are 

defined. The spatial discretization is performed with a TVD scheme, since as 

mentioned in Chapter 5, the TVD van Leer discretization has been shown in 

previous works to be less diffusive, which prompts the formation of waves at 

coarser mesh refinements in comparison with a 1st order Upwind scheme (Fontalvo 

et al. 2020). For time integration, a 1st order implicit Euler is used, due to its stability 

properties. In order to validate the use of a first order time integration method, a 
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timestep convergence test is performed for a representative case of III-ForeDukler-

3. Results are presented in Figure 7.11 in terms of the Courant number (Eq. (5.52) 

for pressure gradient and mean liquid film thickness. The y axis is normalized by 

the experimental values, and dashed lines represent 20% error margins. 

 

Figure 7.11- Timestep convergence test for pressure gradient and mean liquid film 

thickness. Case III-ForeDukler-3. 

A clear convergent solution is obtained even for low Co numbers. For further 

tests, a Co = 0.5 is employed. The simulations were run for 100s to achieve a 

statistically steady state regime, and an additional 30s for the data acquisition and 

analysis of the flow parameters.  

7.3.2 The effect of wave development 

Firstly, a preliminary test is performed with numerical results to understand 

and evaluate the behavior of the novel momentum flux models and their influence 

on wave growth. The II-Zhao-2 configuration is selected as a representative case. 

An intermediary mesh refinement of Δ𝑥 𝐷⁄ = 0.125 is selected.  

Figure 7.12 shows a spatial variation of the instantaneous liquid film 

thickness at 𝑡 = 100s and the correspondent spatial series of the 𝐶𝐿 values 

calculated by Model I and Model II. Naturally, for the linear region, a nearly constant 

𝐶𝐿 value is obtained. The onset of waves prompts a significant variation in the 

momentum flux parameter, to account for the changes in the velocity profiles due 

to the acceleration of the gas-liquid interface. For the liquid film height between 

waves, which is considerably narrower, the shape factor approximates that of a 

Couette flow, 1.334, as seen in both models. As the disturbance waves begin to 

form, the shape factor drops to lower values,1.158 and 1.116 for Model I and II, 

respectively. The tendencies obtained with the simplified models are in line with 

the physical interpretation of the momentum flux parameter based on the shape of 

the velocity distribution. 
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(a) 𝐶𝐿 Model I 

 

(b) 𝐶𝐿 Model II 

Figure 7.12- Spatial variation of the instantaneous liquid film thickness and the 

correspondent 𝐶𝐿 values calculated by (a) Model I and (b) Model II. Case II-Zhao-2. 

The liquid momentum flux parameter is known to damp the disturbances of 

the flow, thereby limiting wave growth. This has been seen in both numerical 

simulations with constant 𝐶𝐿 values and through discrete and differential stability 

analyses. Castello Branco et al. (2021) have shown that in both linear and 

nonlinear regimes, the momentum flux parameter behaves as a low-pass filter, 

which suppresses short wavelength formations at the linear region and reduces 

the amplification factor of the flow. The result of that is a spatial delay in the onset 

of wave development, which can be seen in the spatiotemporal variations of the 

liquid film height, shown in Figure 7.13 for a constant 1.05 value and the two 

proposed models, for the II-Zhao-2 configuration. Only half of the domain is 

explored in this analysis. The lower 𝐶𝐿 value (Figure 7.13a) has a limited effect in 

damping the instabilities, therefore an earlier development of disturbances and 

higher amplitude waves are obtained. The coalescence of waves and increase in 

wave velocity are seen in the intersection points between individual waves and the 

subsequent curved trajectories of the resulting structure. The 𝐶𝐿 Model I (Figure 

7.13b) yields a significant increase in damping of instabilities, as shown by the 

delay in wave formation and lower wave heights. Model II (Figure 7.13c) shows a 
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similar trend, although the damping effect is slightly smaller than for Model I, and 

wave formation occurs at a shorter distance from the inlet.  

 
(a) 𝐶𝐿 = 1.05 

 
(b) 𝐶𝐿 Model I 

 
(c) 𝐶𝐿 Model II 

Figure 7.13- Spatiotemporal variation of the instantaneous liquid film thickness for 

a constant 𝐶𝐿 = 1.05 and the proposed models. Case II-Zhao-2. 

Although the 𝐶𝐿 values of both models drop significantly when representing 

the velocity profile of roll waves, the range of 𝐶𝐿 values of both models for this 

configuration are approximately of 1.15-1.33 and 1.12-1.33 for Model I and Model 
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II, respectively, which promotes the stabilizing effect seen in the spatiotemporal 

data. As discussed, the damping effect also increases the linear region of the flow, 

as the amplification factor is reduced, and waves develop more slowly. According 

to the criteria of section 6.5, the linear regions for Models I and II are 0-0.3283m 

and 0-0.2635m, respectively. For comparison, a constant 𝐶𝐿 = 1.05 value 

produces a linear range of 0-0.1210m.  

7.3.3 Pressure gradient 

In this section, numerical results for pressure drop are evaluated against 

experimental data. Both models and constant 𝐶𝐿 values are evaluated. The 

experimental work of IV-Fershtman-1 does not present data for pressure drop, 

therefore only data from the I-III sets are explored here.  

In order to obtain the pressure gradient at the statistically developed region 

from the pressure field, some measures must be carried out. To limit entrance 

effects from influencing the data, a spatial region far from the inlet is selected. For 

the I-Kaji configuration, which has the longest pipe from this group, a region of 3.5-

6.87m is selected; from II-Zhao, a region of 1-2m is chosen; and from III-

ForeDukler, the selected range is 1-3.5m. 

As mentioned, to ensure that a statistically steady state regime has been 

attained, the simulation is run for 100s before the data acquisition is commenced. 

Figure 7.14 shows the time variation of pressure at x = 1 m (in blue) and its mean 

value (in black). After an initial transient of about 60s, the statistically steady regime 

is attained. The dashed red line indicates the threshold of the data acquisition 

phase. 

Figure 7.15 shows the results of the grid resolution test for the three 

configurations. The results are normalized by the experimental value, therefore 

more accurate predictions should approach the solid black line. The dashed lines 

indicate the 20% error margins.  

For the I-Kaji-1 configuration, all 𝐶𝐿 values have shown good convergence 

tendencies, with 𝐶𝐿 1.10 and the proposed models showing better agreement to 

experimental data, and lower 𝐶𝐿 values of 1.05 and 1.10 presenting higher errors. 

For the II-Zhao-2 configuration, the opposite trend occurs, where lower 𝐶𝐿 values 

better approach the experimental data. All models converge to solutions within the 

20% error bracket. However, the convergence of 𝐶𝐿 1.05 is less stable, as 

intermediary meshes (Δ𝑥 𝐷⁄ = 0.25 and 0.125) predict significantly different 

solutions from the other mesh refinements levels.  
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Figure 7.14- Temporal data of the pressure field and mean pressure. Case II-Zhao-2. 

Lastly, for the III-ForeDukler-3 case, the 𝐶𝐿 Models I and II, and constant 𝐶𝐿 

values of 1.20 and 1.33 show excellent convergence and good agreement to the 

experimental pressure gradient. The good convergence trend occurs because the 

higher 𝐶𝐿 values hinder wave formation; thus, the solutions do not vary with mesh 

refinement. For 𝐶𝐿 1.05 and 1.10, the convergence trend promptly shifts for Δ𝑥 𝐷⁄ ≤

0.25 and the solution appears to stabilize outside of the 20% error bracket. 

  

 

Figure 7.15- Grid resolution tests for pressure gradient, normalized by the 

experimental value. Dashed lines indicate 20% error margins. 

Figure 7.16 presents the numerical versus experimental pressure gradient 

plot for all 𝐶𝐿 values evaluated, with all configurations in the selected dataset where 

experimental pressure gradient measurements were available. All momentum flux 
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parameter values and models obtained most predictions within the 20% error 

margins.  

 

 

 

Figure 7.16- Experimental versus Numerical comparisons for pressure gradient. All 

cases. 
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It is not possible to visually assert which method had a better performance. 

Table 7.3 shows the percentage of cases of the database that had prediction errors 

within the 10% error margin, for each 𝐶𝐿. The variable 𝐶𝐿 models have clearly 

attained better agreement with experimental data, where Model I had 71% of the 

database in the 10% error bracket. Model II presented a similar trend, with 65% of 

the configurations.𝐶𝐿 1.05 had the worst performance, with 39% of the cases.  

The trend in varying the constant 𝐶𝐿 models, as seen from the errors in Table 

7.3, shows that increasing the momentum flux parameter has a positive effect in 

accuracy, up to a point (i.e., 𝐶𝐿 1.33 overdamps the waves and worsens the 

predictions). The higher shape factors tend to reduce amplitudes and increase 

wave frequencies, affecting the shear in the gas stream, which in turn influences 

the pressure drop. The variable 𝐶𝐿 models provide the necessary damping to the 

waves, as they consider the influence of the film thickness on the velocity shape, 

with a direct impact in the wall and interface frictions, which explains their good 

performance. 

Fontalvo et al. (2020) performed a similar numerical analysis of the constant 

momentum flux parameter in combination with the Δ𝑃𝑑𝑦𝑛𝐼𝐼𝐼 model with a large 

dataset. In their work, 𝐶𝐿 values of 1.00, 1.05, 1.20 and 1.33 were assessed. The 

combined effect of both regularization mechanisms yielded a better performance 

with 𝐶𝐿 = 1.05 in comparison to other models, where 96% of the cases fell into the 

20% error bracket for pressure gradient predictions. However, for simulations with 

shape factor values higher than 𝐶𝐿 = 1,05, the accuracy of the model decreased, 

as was obtained here in the absence of the dynamic pressure model. In the present 

work, the constant 𝐶𝐿 1.05 also presented good agreement with experimental data 

(83% within the 20% error range), however, a lower discrepancy was obtained 

when compared to other higher constant 𝐶𝐿  values (~ 60% for both formulations). 

The additional stabilizing effect of the dynamic pressure model (which is dependent 

on an empirical constant, as discussed in section 7.2.3) may have artificially 

increased the stabilizing mechanisms of the model. 

It should be mentioned here that the entrainment of droplets, which is not 

modelled in the formulation presented in this work, also plays a significant role in 

the flow. The momentum transfer generated by the presence of droplets in the gas 

flow can be important in some cases, accounting for up to 20% of the pressure 

gradient (Fore & Dukler, 1995; Belt, 2007). Thus, the positive effect of shape 

factors greater than one, may also be attributed to offsetting the effect of 

entrainment in the flow. 
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Table 7.3: Percentage of cases within the 10% error margin for pressure gradient. 

𝑪𝑳 
0-10% Error margin 

−𝒅𝒑 / 𝒅𝒙 

𝟏. 𝟎𝟓 39% 

1.10 61% 

1.20 61% 

1.33 50% 

Model I 71% 

Model II 65% 

7.3.4 Film thickness 

Numerical results for mean film thickness predictions are also compared 

against reference experimental data. Both models and constant 𝐶𝐿 values are 

evaluated. The film thickness measurements in the datasets I-III and V were 

obtained at several conductance probes along the axial direction. The databases 

IV and VI presented measurements at only one position near the exit.  

For the cases with more than one measurement position, two comparisons 

were performed: (i) an average film thickness ℎ𝐿 from all probes is calculated from 

both experimental data and numerical simulations; (ii) only the local measured data 

of the probe farthest from the inlet (ℎ𝐿,𝑖) is used for comparisons. In a similar 

manner to the pressure drop, data from the initial transient is discarded and the 

100-130s temporal range is evaluated. 

Initially, a grid resolution test of the mean film thickness ℎ𝐿 is performed for 

representative cases. The results are shown in Figure 7.17. For the I-Kaji-1 

configuration, the 𝐶𝐿 1.05 value presents the least accurate solution and worst 

convergence trend. The momentum flux parameter values of 1.10, 1.20 and the 

variable 𝐶𝐿 models all showed good convergence properties and obtained 

solutions with errors below 20%. 

For the II-Zhao-2 case, 𝐶𝐿 1.05 obtained excellent agreement to experimental 

data. All methods appear to achieve mesh convergence, however, higher 𝐶𝐿 values 

and the variable models presented higher errors. For the III.ForeDukler-3 case, 𝐶𝐿 

1.05 and 1.10 presented errors above 20%, whereas the other models stayed 

within the 20% margin. Lastly, for the IV-Fershtman-1 configuration, the variable 

𝐶𝐿 models obtained both good agreement to experimental data and stable mesh 

convergence.  
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Figure 7.17- Grid resolution tests for mean film thickness normalized by the experimental 

value. Dashed lines indicate 20% error margins. 

Figure 7.18 shows the experimental versus numerical plots for all methods. 

A visual analysis shows that higher film thickness values are overpredicted by 

virtually all models. For lower film thickness cases, lower 𝐶𝐿 values underpredict 

the experimental measurements, especially for 𝐶𝐿 1.05. The same analysis was 

performed for the local film thickness, and results are shown in the Appendix C.  

Table 7.4 shows the percentage of cases of the dataset that had prediction 

errors of liquid film thickness within the 10% error range, for each 𝐶𝐿. Both mean 

and instantaneous film height data are shown. Again, the variable 𝐶𝐿 models have 

clearly attained better agreement with experimental data, with 33% and 41% of the 

mean height and local height predictions within the 10% error margin for Model I, 

and 44% for both mean and local height for Model II. The least accurate model 

was 𝐶𝐿 = 1.33, with 18% and 11% of the cases in the 10% range.  

The effect of constant 𝐶𝐿 values in the mean and local film thickness 

predictions follows a clear trend. Lower shape factors, i.e., 1.05, tend to 

underpredict the liquid film height values because the film mass is largely 

distributed throughout the high amplitude roll waves, which results in a narrow film 

between wave structures. As the shape factor is increased, e.g., 𝐶𝐿 = 1.10, the 

average liquid film increases, and the errors naturally decrease. Stronger damping 

from constant 𝐶𝐿 > 1.10 parameters will tend to excessively reduce the wave 
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amplitudes and promote an overprediction of the average quantities. The non-

constant 𝐶𝐿 models tackle this issue by introducing a more accurate representation 

of the velocity and phase fraction distribution, and the damping effect of the shape 

factor will vary locally. From the data thus far, the proposed models have shown 

promising improvements to the accuracy of the 1D Two-Fluid Model for annular 

flows. 

  

 

 

Figure 7.18- Experimental versus Numerical comparisons for mean film thickness. 
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The influence of increasing the momentum flux parameter in the liquid film 

thickness prediction can also be compared with the analysis of Fontalvo et al. 

(2020), where a dynamic pressure modelling was included in their study. The best 

performance was also obtained with 𝐶𝐿 = 1.05, with 63% of cases within the 20% 

error bracket. For simulations with 𝐶𝐿 > 1.05, the accuracy of the model also 

decreased, with approximately 40% of the cases within the 20% error range. In the 

present work, the constant 𝐶𝐿 1.05 also presented good agreement with 

experimental data (54% for local film height), however, a lower discrepancy was 

obtained when compared to other constant values. As mentioned, the empirical 

dynamic pressure model may have artificially increased the stabilizing 

mechanisms of the model, with a direct impact the in the wave formation, and 

consequently in the liquid film thickness.  

Table 7.4: Percentage of cases within the 10% error margin for film thickness. 

𝑪𝑳 
0-10% Error margin 

𝒉𝑳 𝒉𝑳,𝒊 

𝟏. 𝟎𝟓 25% 29% 

1.10 21% 36% 

1.20 18% 18% 

1.33 18% 11% 

Model I 33% 41% 

Model II 44% 44% 

 

From an analysis of Figure 7.18, inaccurate results were obtained for all 

models with a particular group of experimental cases within the same database, 

namely the III.ForeDukler-6 to III.ForeDukler-10 configuration. These cases 

correspond to high superficial liquid Reynolds numbers. To better understand the 

discrepancies, one can take advantage of the similarity in diameter, fluid properties 

and superficial velocities of database III and VI, and perform a comparison between 

the predictions of the models against the two experimental works. Groups with 

similar superficial Reynolds numbers, i.e., 𝑅𝑒𝑠𝐿 250 and 300, 𝑅𝑒𝑠𝐿 2000 and 3000, 

were selected from database III and VI, respectively. Additional cases were run for 

the 𝑅𝑒𝑠𝐿 250 configuration of database VI. The comparison is shown in Figure 7.19 

for the variable models, and constant 𝐶𝐿 values of 1.05 and 1.10. For the lower 

𝑅𝑒𝑠𝐿, similar results were obtained with the Two-Fluid Model with different 𝐶𝐿 

values. Visually, the prediction errors do not seem to improve when using one 

database or the other. However, for the higher Reynolds number, significantly 
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different results were obtained, where the predictions of database VI were more 

accurate for all 𝐶𝐿 values shown. These results suggest that the experimental 

values for film thickness of database VI are more precise, due to their use of more 

modern measuring techniques. From this comparison, the discrepancy obtained in 

the previous analysis is seen to be caused by the experimental data, and not the 

numerical model. 

 

 

Figure 7.19- Experimental versus Numerical comparisons of databases III and VI for 

mean film thickness - 𝐶𝐿 1.05, 1.10, Model I and Model II. 

The timeseries of the film height for the II-Zhao-2 case are shown in Figure 

7.20 and Figure 7.21 at probe locations of 𝑥 = 0.62m and 𝑥 = 2.00m. The 

configuration of IV-Fershtman-1 also has temporal data for the liquid film height at 

𝑥 = 7.5m (Figure 7.22).  

All 𝐶𝐿 models are evaluated in their ability to predict the base liquid film 

thickness and wave amplitudes in Figure 7.20 and Figure 7.21. The tendency of 

the measured data is clear, in the first probe (𝑥 =0.62m) the waves are shorter, 

and the base film is thicker, such that the average film thickness value is relatively 

high (ℎ𝐿𝑒𝑥𝑝 = 0.151mm). At the second probe (𝑥 =2m), the waves undergo an 

increase in amplitude and the base film becomes thinner, which naturally prompts 
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a decrease in the mean film thickness (ℎ𝐿𝑒𝑥𝑝 = 0.131mm). This trend is 

reasonably predicted by all 𝐶𝐿 values and models. 
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Figure 7.20- Temporal liquid film thickness data at 𝑥 = 0.62m. II-Zhao-2 case. 

 

 

0

4

8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
t (s)

CL Model I; hL = 0.201 mm Exp.; hL = 0.151  mmx = 0.62 [m]    

h
L

,i
 /h

L

0

4

8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
t (s)

CL Model II; hL = 0.189 mm Exp.; hL = 0.151  mmx = 0.62 [m]    

h
L

,i
 /h

L

0

4

8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t (s)

CL=1.05; hL = 0.164 mm Exp.; hL = 0.151  mmx = 0.62 [m]    

h
L

,i
 /h

L

0

4

8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
t (s)

CL=1.10; hL = 0.1703 mm Exp.; hL = 0.151  mmx = 0.62 [m]    

h
L

,i
 /h

L

0

4

8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t (s)

CL=1.20; hL = 0.1971 mm Exp.; hL = 0.151  mmx = 0.62 [m]    

h
L

,i
 /h

L

0

4

8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t (s)

CL=1.33; hL = 0.2027 mm Exp.; hL = 0.151  mmx = 0.62 [m]    

h
L

,i
 /h

L

DBD
PUC-Rio - Certificação Digital Nº 1920932/CA



7. Results and Discussion ________________________ 120 

 

 

 

 

 

 

 

Figure 7.21- Temporal liquid film thickness data at 𝑥 = 2.00 m. II-Zhao-2 case. 
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Figure 7.22- Temporal liquid film thickness data at 𝑥 = 7.5m. IV-Fershtman-1 case. 
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The use of a constant 𝐶𝐿 = 1.05 both overpredicts the wave amplitudes and 

underpredicts the film thickness between waves, particularly for 𝑥 = 2m. A 𝐶𝐿 =

1.10 shows a more accurate prediction of wave heights, but slightly underpredicts 

the base film thickness. Further increase of the 𝐶𝐿 value promotes an overdamping 

of waves, and 𝐶𝐿 = 1.33 blocks the formation of waves altogether for 𝑥 = 0.62m 

and predicts very short ripple waves at 𝑥 = 2m. The variable 𝐶𝐿 Model I also 

promotes excessive damping of disturbances, and therefore underpredicts wave 

amplitudes. Model II, however, obtained the best agreement to experimental data: 

it showed accurate results for both wave heights and base film thickness, for the 

two positions. 

Figure 7.22 presents the timeseries of the predicted liquid film height with all 

𝐶𝐿 models, comparing results with the experimental data. A similar trend in the 

numerical models from the II-Zhao-2 analysis is observed here, where low constant 

𝐶𝐿 values show a tendency to promote excessively high amplitude waves and very 

thin films, and an increase in the constant 𝐶𝐿 can improve the numerical results up 

to a certain point. A constant 𝐶𝐿 = 1.10 shows very good agreement to the 

experimental curve, and higher 𝐶𝐿 values excessively damp the waves. The 𝐶𝐿 

Model II devised in the present work shows excellent agreement for both wave 

amplitude and base film thickness. 

7.3.5 Frequency  

Here, a brief discussion on the frequency spectrum of the film thickness 

signal is carried out. The configuration of II-Zhao-2 is selected to evaluate the 

Power Spectral Density (PSD) function of the film height temporal data. The 

methodology to obtain the PSD spectrum from simulation results is outlined in 

Appendix B. 

Three axial locations were chosen for this test, namely 𝑥 = 0.62, 0.92 and 

2m, which are shown in Figure 7.23 for the different 𝐶𝐿 models. The overall trend 

of the experimental energy spectrum is that the peak decreases along the axial 

direction, whereas the opposite occurs in the numerical PSD data. As suggested 

in Zhao et al. (2013), the decrease in the energy spectrum is due to the 

coalescence of waves and the entrainment of droplets in the gas core. The 

entrainment phenomenon is not modeled in the present work, which may partly 

explain the discrepancies with the simulated data. The wave damping effect of 

higher 𝐶𝐿 values can be clearly seen from the PSD data, where the energy 

spectrum for the 𝑥 = 0.62 and 0.92m suggest that the onset of waves occurs 

DBD
PUC-Rio - Certificação Digital Nº 1920932/CA



7. Results and Discussion ________________________ 123 

 

farther into the spatial domain. This effect is responsible for the increasing trend of 

the PSD spectrum, where the spatial amplification of waves induces an increase 

in energy, which can also be the cause of the inaccurate results of higher shape 

factor values. 𝐶𝐿 1.05 obtains the closest agreement for the first two positions, but 

for the last position a 𝐶𝐿 of 1.10 obtains the best prediction.  

 

Figure 7.23- Power Spectral Density (PSD) function of the liquid film height timeseries. II-

Zhao-2 case. 

The numerical results for the dominant frequency 𝜈𝑃𝑆𝐷, i.e., the frequency 

associated with the peak of the PSD spectrum, agree better to the measured data 

than the peaks of the PSD spectra. Figure 7.24 shows a comparison between the 

numerical and experimental dominant frequencies at the different probe locations. 

All cases show a decrease of the dominant frequency along the pipe. Again, the 

lower 𝐶𝐿 1.05 value obtains the most adherent result to the measurements, with a 

slight overprediction of the experimental results but with an agreeing overall trend. 

Also, an increase of 𝐶𝐿 values yields a greater overprediction of the dominant 

frequency. 

While the experimental PSD frequency stabilizes at x= 1m, all numerical 

predictions show a slower decay, as a reflection of the delayed axial development 

of waves caused by higher 𝐶𝐿 numbers. Experimentally, the waves start forming at 

the inlet, while numerically, there is a development length from the non-perturbed 

entrance condition. At the exit probe, all numerical curves still show a developing 

trend, which suggests that a domain length increase is necessary to obtain a 

stabilized solution, possibly in better agreement with the experimental PSD 

spectra. Castello Branco et al. (2021) performed domain length tests with the 

configuration of Zhao et al. (2013) to investigate its effect in numerical growth rates 

at the linear region of the pipe. The actual Zhao et al. (2013) configuration pipe 

length is 2m, Castello Branco et al. (2021) have tested pipes with 1, 2 and 4 m, 
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and they have shown that the numerical growth rates are independent of the 

domain’s length, with perfect agreement in the same region. However, if the flow 

is not yet stabilized, it might stabilize in a longer pipe. Additional work may be 

required to investigate if the spatial stabilization of the numerical solution with 

stronger regularization mechanisms matches the experimental data, given a longer 

domain. That would shed additional light into the physical soundness of these 

models. 

 

Figure 7.24- Development of the Power Spectral Density (PSD) dominant frequency 

along the domain. II-Zhao-2 case. 

7.3.6 Group velocity 

All configurations except the II-Zhao present group velocity data (𝐶𝑤), 

obtained from the cross correlation of the timeseries measured at two probes at a 

certain distance. The numerical group velocity is calculated in a similar manner 

and is shown in more detail in Appendix B. 

The configurations of I-Kaji1, III.ForeDukler-3 and IV-Fershtman-1 were once 

again selected for the grid resolution tests. Figure 7.25 shows the mesh resolution 

test for the mean group velocity of all probe positions, where once again the 

numerical results have been normalized by the experimental value. Results for the 

I-Kaji-1 configuration show that all models obtain fairly similar predictions, except 

for the 𝐶𝐿 1.05 value, where a large discrepancy is obtained for Δ𝑥 𝐷⁄ = 0.25. For 

the III.ForeDukler-3 case, the coarser meshes are unable to detect the formation 

of waves with all 𝐶𝐿 values. However, for finer grids, mesh convergence is roughly 

attained for all models, where Model I, Model II and 𝐶𝐿 1.10 had good agreement 

with measured data (within the 20% error margin). For the IV-Fershtman-1 case, 

grid convergence is attained for all models, however, the errors were particularly 

high. 𝐶𝐿 = 1.05 obtained slightly better predictions than the other models. 
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Figure 7.25- Grid resolution tests for group velocity, normalized by the 

experimental value. Dashed lines indicate 20% error margins. 

Figure 7.26 presents the experimental versus numerical plot for the group 

velocity. The best agreement is clearly obtained with the 𝐶𝐿 = 1.05, where most of 

the cases were within the 30% error margins. As has been extensively discussed, 

the increase of the liquid shape factor introduces higher damping into waves, and 

smaller waves tend to present lower velocities due to the reduced shear. Thus, all 

datapoints of group velocity results are naturally underpredicted for higher 𝐶𝐿 

values in comparison to 1.05. 𝐶𝐿 values of 1.20 and 1.33 completely damped the 

wave formation in some cases, such that the calculated group velocity was zero.  

Lastly, the variable 𝐶𝐿 models obtained inaccurate predictions for most of the 

cases, with a large spread of data predictions, as can be seen in the figure. 

Table 7.5 displays the percentage of cases of the database that had 

prediction errors within the 30% error range, for each 𝐶𝐿. Clearly, a constant value 

of 1.05 has obtained highly accurate results in comparison to the other models, 

where 81% of the cases fell within the margin. However, Model I and II have shown 

a slight improvement from the higher 𝐶𝐿 values of 1.20-1.33.  
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Figure 7.26- Experimental versus numerical graph for Group velocity 

 

Table 7.5: Percentage of cases within the 30% error margin for group velocity. 
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7.3.7 Global evaluation of numerical predictions 

The mean errors for pressure gradient, mean film thickness, local film 

thickness and group velocity are displayed in Table 7.6. For −𝑑𝑝 / 𝑑𝑥, the 𝐶𝐿 

Models I and II obtained the smallest average error of the set, 9%, followed by 𝐶𝐿 

1.10 and 1.20 with 10% errors. For mean and local film thicknesses, Model I and 

II also presented the smallest errors, with 21% and 20% for Model I and 20% and 

16% for Model II. From the constant shape factor values, 𝐶𝐿 1.05 obtained the most 

accurate results, with 25% and 22% errors. For the group velocity 𝐶𝑤, the constant 

1.05 value also performed best, with 17% average error. Model II obtained an 

average error of 42%, which is satisfactory, considering the performance of the 

other models. The overall trend shows that the variable 𝐶𝐿 models showed 

consistency in their accuracy, achieving the best prediction for pressure gradients 

and film thickness, and satisfactory predictions for group velocity with Model II.  

Table 7.6: Average error for all quantities. 

𝑪𝑳 
Mean Error 

−𝒅𝒑 / 𝒅𝒙 𝒉𝑳 𝒉𝑳,𝒊 𝑪𝒘 

𝟏. 𝟎𝟓 13% 25% 22% 19% 

1.10 10% 27% 22% 34% 

1.20 10% 34% 33% 53% 

1.33 13% 40% 41% 64% 

Model I 9% 21% 20% 53% 

Model II 9% 20% 16% 42% 

 

Furthermore, a combined relative error of pressure drop, local film thickness 

and group velocity is calculated and shown in Table 7.7. The error is defined as 

𝜀𝑐 =
1

𝑚
∑(𝑛√∏ 𝜀𝑖

𝑛

 𝑖=1
)

𝑚

𝑗=1

 (7.7) 

where 𝜀𝑖 is the relative error of the variable i, 𝑛 is the number of variables, j 

represents a case from the database, and 𝑚 is the total number of cases. From 

the combined error results, the 𝐶𝐿 = 1.10 obtained the best results out of the 

constant value cases. Model I presented a slight improvement in comparison to 

1.10, and Model II presented the most accurate solution, with a mean combined 

error of 14,89%. 
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Lastly, a simulation time test is carried out to determine the additional 

computational cost of the 𝐶𝐿 calculations of the proposed models. The simulations 

were run on an Intel Core i9-10900F 2.80GHz machine with 16 GB of RAM. A 𝐶𝐿 

test of the II-Zhao-2 configuration with a mesh refinement level of Δ𝑥 𝐷⁄ = 0.25 was 

selected. Table 7.8 shows the simulation time for each case, and the relative 

runtime in comparison to the 𝐶𝐿= 1.05 case. The results show that a similar runtime 

was obtained for all cases, where the increase in 𝐶𝐿 number yields faster 

simulations. This effect is due to the stabilizing nature of the momentum flux 

parameter, which results in the need for fewer iterations to achieve convergence 

within a timestep. The proposed models naturally require more computational 

power to perform the additional calculations, but since the solutions are more 

stable than with a low 𝐶𝐿 number, the increase in simulation time is not as high. 

Although Model II obtained the highest simulation time, there was only a 3% 

increase in comparison to the 𝐶𝐿 = 1.05 and Model I presented a 2% reduction 

from the 1.05 run. Overall, the differences in simulation time were not significant.  

Table 7.7: Combined error. 

𝑪𝑳 𝜺𝒄 

𝟏. 𝟎𝟓 17.96% 

1.10 17.61% 

1.20 22.02% 

1.33 26.97% 

Model I 17.52% 

Model II 14.89% 

 

Table 7.8: Simulation time test. 

𝑪𝑳 Simulation time (s) Relative runtime 

𝟏. 𝟎𝟓 4416 1 

1.10 4250 0.9624 

1.20 4213 0.9541 

Model I 4330 0.9805 

Model II 4560 1.0326 
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8 CONCLUSION 

The present work evaluated the hydrodynamic stability properties of 

commonly employed closure relations for vertical annular flows with the 1D Two-

Fluid Model. Differential and discrete stability analyses were carried out to evaluate 

the mathematical and discretized system of equations. The closure relations were 

evaluated through their differential and discrete growth rate curves in the frequency 

(or wavelength) spectrum. Mesh refinements of  Δ𝑥 𝐷⁄ = 1 to 0.015625 were 

selected to generate the discrete dispersion relation curves. The stability analysis 

results showed that closure models such as the interface pressure jump, the 

dynamic pressure model and the momentum flux parameter worked to stabilize the 

flow and ensure the hyperbolicity of the system of equations. 

The pressure jump introduces a cut-off frequency above which no growth 

rates are present. Thus, it promptly regularizes the system, and the unbounded 

growth of perturbations, characteristic of the standard model, is blocked. In this 

case, mesh refinement can be attained. The surface tension term, however, does 

not provide any meaningful damping of perturbations for the majority of the 

configurations analyzed. Additional regularization mechanisms are then required 

to ensure that mesh convergence can be attained at practical grid resolutions. 

Three interfacial friction factor correlations and three liquid film models were 

assessed. Results from the LST were inconclusive as no significant effect was 

observed in the growth rates by varying the 𝑓𝑖 and 𝑈𝑖 models.  

Three dynamic pressure models were evaluated through LST. Results have 

shown that the addition of any dynamic pressure formulation works to stabilize the 

flow, introducing a small amount of damping into the growth rate curves. However, 

no meaningful change in the hyperbolicity of the system has been observed in a 

stability sense for Models Δ𝑃𝑑𝑦𝑛𝐼 and Δ𝑃𝑑𝑦𝑛𝐼𝐼𝐼. For the representative case of II-

Zhao-2, the second dynamic pressure model Δ𝑃𝑑𝑦𝑛𝐼𝐼 was able to introduce a 

growth rate plateau, which regularizes the flow. However, the level of mesh 

refinement required to achieve convergence is prohibitively high.  

Four constant momentum flux parameter values (1.05 through 1.33) and two 

proposed models were tested in this work. The momentum flux parameter has 

proved to be a very important tool in regularizing the system, where values above 
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1.10 managed to introduce appropriate regularization of the flow by introducing a 

plateau at low growth rate values. The use of models that depend on local flow 

quantities proved to also be very effective in blocking unbounded growth of 

disturbances. However, the stability analysis results are restricted to the linear 

region, and further assessment were carried out in terms of the nonlinear behavior 

of the 𝐶𝐿 models. It can be concluded from the LST results that the analyzed 

closure models had positive effects in ensuring the hyperbolicity of the 1D Two-

Fluid Model. The combined used of the closure relations must be done with caution 

to ensure the physical soundness and appropriate stability properties. 

The variable 𝐶𝐿 models were evaluated numerically against an extensive 

database composed of experimental works from the literature. Statistical quantities 

of pressure gradient, liquid film thickness and group velocity were used, when 

available. Rigorous grid resolution tests for a representative subset of 

configurations were carried out, and an experimental versus numerical comparison 

was performed for the entire dataset. Mesh refinements of  Δ𝑥 𝐷⁄ = 1 to 0.0625 

were selected to compose the grid test. Results have shown that all momentum 

flux parameter models obtained good mesh convergence properties. The proposed 

Models I and II showed improvements on pressure gradient and film thickness data 

but underperformed against 𝐶𝐿 = 1.05 on the group velocity tests. However, 

reasonable agreement was obtained for Model II. It can be concluded that the 

proposed models have improved the predictions of the 1D Two Fluid Model and 

showed consistency in accuracy across the database.  

Further studies must be carried out to shed light into the missing physics in 

the modeling, aiming to improve the predictions of group velocity and frequencies. 

The database should also be expanded to include experimental works with larger 

diameters, higher (and lower) superficial velocities. In cases of higher gas and 

liquid superficial velocities, the impact of the entrainment of droplets in the gas core 

must be modeled.  

The effect of entrainment on the gas velocity profile and turbulence is also 

significant, as has been shown in works from the literature. Further, a small 

increase in the shape factor has proved to have a profound impact on the flow for 

the liquid phase. Therefore, the development of a model for the gas momentum 

flux parameter must be a goal for future studies. Turbulence modelling may also 

be a promising addition to the 1D model. 

Additionally, the 𝐶𝐿 models must be further developed to contemplate the 

flow reversal effect that occurs in the liquid loading phenomenon, where the 

velocity profile undergoes complex changes. 
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Another future improvement to the present model is to implement a periodic 

domain. It is a promising alternative to the use of refined meshes in longer pipes, 

where the computational cost might be prohibitive, especially for analyzing the 

impact of closure models on wave stability properties. 
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Appendix A 

In this section, the procedure to calculate the equilibrium film height from the 

superficial velocities and fluid properties is outlined 

 

(i) From the superficial velocities, estimate 𝛼𝐺  

𝛼𝐺 =
𝑈𝑠𝐺

𝑈𝑠𝐺 + 𝑈𝑠𝐿
 (A.1) 

(ii) From 𝛼𝐺, calculate an estimate for ℎ𝐿 and define a 𝑑ℎ𝐿 = 1𝑒
−6 

(iii) Calculate the residual for ℎ𝐿 

a) From Eqs. (3.9) to (3.11), calculate the geometrical parameters in terms 

of ℎ𝐿 

b) Calculate phase velocities, Reynolds number, friction factors, and 

shear stresses 

c) Solve the equation below to obtain the residue 

𝑟𝑒𝑠 = (𝜌𝐿 − 𝜌𝐺)𝑔 sin𝛽 −
𝜏𝐿𝑆𝐿
𝐴𝐿

−
𝜏𝑖𝑆𝑖
𝐴
(
1

𝛼𝐿
+
1

𝛼𝐺
)  (A.2) 

(iv) Repeat step (iii) for ℎ𝐿 + 𝑑ℎ𝐿, obtaining a new residual 𝑑𝑟𝑒𝑠 

(v) Calculate the residual variation with 𝑑𝑟/𝑑ℎ𝐿 = (𝑑𝑟𝑒𝑠 − 𝑟𝑒𝑠)/𝑑ℎ𝐿 

(vi) Update ℎ𝐿 = ℎ𝐿
𝑜 − 𝑟𝑒𝑠/(𝑑𝑟/𝑑ℎ𝐿) 

(vii) Check physical limits 

a) ℎ𝐿 > 𝐷 

b) ℎ𝐿 < 0 

(viii) Repeat step (iii) for the new ℎ𝐿 

(ix) Check residuals 

a) If 𝑟𝑒𝑠 < 1𝑒−6, go to 

b) If 𝑟𝑒𝑠 ≥ 1𝑒−6, go to (iii) 

(x)  Finish 
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Appendix B 

The current section outlines the procedure to obtain the statistical quantities 

from the numerical simulations of section 7.3. 

B.1. Group velocity 

As shown in Fontalvo (2016), the group velocity is calculated through the 

cross correlation of the time signal of the liquid film. First, two positions 𝑥1 and 𝑥2 

are defined, then, a timeseries from each position is obtained (Figure B.1). With 

both time signals, the cross correlation can be calculated.  

 

Figure B.1- Time signal delay from two probe positions. Fontalvo (2016). 

From the cross-correlation data, the time delay can be extracted from the 

peak of the 𝑅𝑥,𝑦 timeseries, which is associated to the temporal offset Δ𝑡 that grants 

the highest correlation between the two signals. From the delay, one can obtain 

the structure velocity from the following equation 

𝐶𝑤 =
𝑥2 − 𝑥1
𝛥𝑡

  (B.1) 

We note that the distance between 𝑥1 and 𝑥2 is very important to correctly 

evaluating of the cross-correlation. The distance must be large enough not to 

generate a very small time delay and narrow enough in order for the time signals 

in both probes to be sufficiently similar (the waves may coalesce and significantly 
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alter the structure of the group). 

 

Figure B.2- Cross-correlation signal. Fontalvo (2016). 

B.2. PSD Spectrum 

The PSD is the Power Spectral Density of the signal, which calculates the 

amount of power/energy content for each frequency of the spectrum. It can be 

obtained from the Welch periodogram. For this, we rely on the fast Fourier 

transform (𝑓𝑓𝑡) of the liquid film thickness signal. As mentioned in Section 6.5, the 

sampling frequency 𝑓𝑆 of the simulations’ data acquisition time is of 1kHz. The 

spectrum spans from 0Hz to the Nyquist frequency, i.e., 𝑓𝑠/2. The Welch 

methodology proposes the 𝑓𝑓𝑡 to be performed to individual smaller time signals 

blocks, with an overlap. In that way, the obtained spectrum is smoother. From the 

PSD spectrum (Figure B.3), the dominant frequency 𝜈𝑃𝑆𝐷 is obtained as the 

frequency associated with the peak of the spectrum. 

 

Figure B.3- PSD spectrum and dominant frequency. Fontalvo (2016). 
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Appendix C 

The following section presents the stability analysis results omitted from 

Chapter 7 for brevity. The dynamic pressure model test was carried out using the 

configuration II-Zhao-2 as a representative case. The momentum flux parameter 

test was performed for the I-Kaji-1 case. The remaining cases are shown here. 

C.1. Dynamic Pressure model test 

 

Δ𝑃𝑑𝑦𝑛 = 0                        Δ𝑃𝑑𝑦𝑛𝐼                        Δ𝑃𝑑𝑦𝑛𝐼𝐼                         Δ𝑃𝑑𝑦𝑛𝐼𝐼𝐼 

I-Kaji-1 

 

Δ𝑃𝑑𝑦𝑛 = 0                        Δ𝑃𝑑𝑦𝑛𝐼                        Δ𝑃𝑑𝑦𝑛𝐼𝐼                         Δ𝑃𝑑𝑦𝑛𝐼𝐼𝐼 

III-ForeDukler-3 

 

Δ𝑃𝑑𝑦𝑛 = 0                        Δ𝑃𝑑𝑦𝑛𝐼                        Δ𝑃𝑑𝑦𝑛𝐼𝐼                         Δ𝑃𝑑𝑦𝑛𝐼𝐼𝐼 

IV-Fershtman-1 

Figure C.1- Stability Analysis: Dynamic Pressure model test. 
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C.2. Momentum flux parameter test 

 

𝐶𝐿 1.05                                    𝐶𝐿  1.10                                  𝐶𝐿 1.20 

 

…𝐶𝐿  1.33                                𝐶𝐿 Model I                                𝐶𝐿 Model II 

Figure C.2- Stability Analysis: Momentum flux parameter test. II-Zhao-2 

 

𝐶𝐿 1.05                                    𝐶𝐿  1.10                                  𝐶𝐿 1.20 

 

…𝐶𝐿  1.33                                    𝐶𝐿 Model I                                 𝐶𝐿 Model II 

Figure C.3- Stability Analysis: Momentum flux parameter test.  III-ForeDukler-3 
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𝐶𝐿 1.05                                    𝐶𝐿  1.10                                  𝐶𝐿 1.20 

 

  𝐶𝐿  1.33                                𝐶𝐿 Model I                                𝐶𝐿 Model II 

Figure C.4- Stability Analysis: Momentum flux parameter test. IV-Fershtman-1 
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C.3. Numerical versus Experimental test for the local film thickness  

 

Figure C.5- Numerical Analysis: Experimental vs Numerical plot for instantaneous liquid 

film thickness at the probe location closest to the exit. 
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